File size: 14,576 Bytes
469c254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e2f2a1
0baf4d0
 
 
7e2f2a1
f184bba
0baf4d0
22d148d
 
0baf4d0
22d148d
 
f184bba
0baf4d0
7e2f2a1
2ddd46f
0baf4d0
dbdcde9
0baf4d0
f184bba
2ddd46f
 
0baf4d0
 
 
22d148d
f184bba
 
 
2ddd46f
f184bba
7e2f2a1
f184bba
 
 
 
7e2f2a1
2ddd46f
22d148d
f184bba
 
7e2f2a1
 
f184bba
2ddd46f
dbdcde9
 
22d148d
f184bba
0baf4d0
f184bba
 
dbdcde9
2ddd46f
 
22d148d
f184bba
 
 
7e2f2a1
f184bba
 
 
 
22d148d
f184bba
22d148d
 
f184bba
 
 
 
2ddd46f
7e2f2a1
22d148d
f184bba
 
7e2f2a1
2ddd46f
22d148d
2ddd46f
22d148d
f184bba
 
7e2f2a1
22d148d
2ddd46f
 
0baf4d0
f184bba
 
 
2ddd46f
0baf4d0
 
f184bba
 
7e2f2a1
2ddd46f
22d148d
2ddd46f
0baf4d0
f184bba
 
7e2f2a1
22d148d
2ddd46f
 
f184bba
0baf4d0
f184bba
 
22d148d
2ddd46f
22d148d
0baf4d0
f184bba
0baf4d0
2ddd46f
dbdcde9
2ddd46f
7e2f2a1
 
2ddd46f
 
 
0baf4d0
f184bba
0baf4d0
dbdcde9
2ddd46f
22d148d
0baf4d0
f184bba
dbdcde9
 
 
 
 
0baf4d0
2ddd46f
22d148d
2ddd46f
 
7e2f2a1
dbdcde9
7e2f2a1
2ddd46f
dbdcde9
2ddd46f
0baf4d0
f184bba
0baf4d0
2ddd46f
 
0baf4d0
f184bba
0baf4d0
22d148d
2ddd46f
 
 
22d148d
f184bba
0baf4d0
2ddd46f
 
 
dbdcde9
22d148d
f184bba
22d148d
f184bba
 
22d148d
f184bba
22d148d
dbdcde9
 
22d148d
f184bba
 
22d148d
7e2f2a1
2ddd46f
dbdcde9
 
 
22d148d
f184bba
 
 
 
7e2f2a1
22d148d
f184bba
22d148d
 
2ddd46f
 
 
0baf4d0
f184bba
2ddd46f
 
 
 
 
 
 
 
0baf4d0
 
 
 
469c254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f184bba
469c254
 
 
 
22d148d
469c254
22d148d
dbdcde9
f184bba
22d148d
469c254
 
 
2ddd46f
 
 
0baf4d0
2ddd46f
 
469c254
 
 
 
f184bba
 
7bb7bdc
469c254
 
f184bba
dbdcde9
469c254
 
 
 
22d148d
469c254
f184bba
469c254
 
 
2ddd46f
 
 
 
 
 
469c254
 
 
 
2ddd46f
f184bba
22d148d
f184bba
 
dbdcde9
22d148d
 
 
 
0baf4d0
7bb7bdc
f184bba
 
 
dbdcde9
f184bba
2ddd46f
0baf4d0
 
f184bba
7e2f2a1
7bb7bdc
 
 
 
 
f184bba
0baf4d0
f184bba
 
 
 
2ddd46f
22d148d
 
f184bba
7bb7bdc
 
0baf4d0
f184bba
22d148d
dbdcde9
2ddd46f
dbdcde9
f184bba
22d148d
f184bba
 
 
 
22d148d
0baf4d0
dbdcde9
f184bba
0baf4d0
 
22d148d
f184bba
22d148d
 
f184bba
22d148d
f184bba
dbdcde9
22d148d
 
 
 
dbdcde9
2ddd46f
22d148d
 
 
 
 
dbdcde9
2ddd46f
22d148d
 
 
 
 
 
 
 
 
 
 
f184bba
22d148d
dbdcde9
f184bba
dbdcde9
469c254
f184bba
 
 
22d148d
469c254
7bb7bdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import streamlit as st
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import sys
import plotly.express as px
import plotly.graph_objects as go
from transformers import BertTokenizer
import nltk

# Download required NLTK data
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt')
try:
    nltk.data.find('corpora/stopwords')
except LookupError:
    nltk.download('stopwords')
try:
    nltk.data.find('tokenizers/punkt_tab')
except LookupError:
    nltk.download('punkt_tab')
try:
    nltk.data.find('corpora/wordnet')
except LookupError:
    nltk.download('wordnet')

# Add project root to Python path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))

from src.models.hybrid_model import HybridFakeNewsDetector
from src.config.config import *
from src.data.preprocessor import TextPreprocessor

# Custom CSS with Poppins font and increased font sizes
st.markdown("""
<style>
    /* Import Google Fonts */
    @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;500;600;700&display=swap');

    /* Global Styles */
    * {
        margin: 0;
        padding: 0;
        box-sizing: border-box;
    }

    .stApp {
        font-family: 'Poppins', sans-serif;
        background: #f8fafc;
        min-height: 100vh;
        color: #1a202c;
    }

    /* Ensure sidebar is visible */
    #MainMenu {visibility: visible;}
    footer {visibility: hidden;}
    .stDeployButton {display: none;}
    header {visibility: hidden;}
    .stApp > header {visibility: hidden;}

    /* Container */
    .container {
        max-width: 1200px;
        margin: 0 auto;
        padding: 1.5rem;
    }

    /* Header */
    .header {
        padding: 1.5rem 0;
        text-align: center;
    }

    .header-title {
        font-size: 2.5rem;
        font-weight: 700;
        color: #1a202c;
        display: inline-flex;
        align-items: center;
        gap: 0.5rem;
    }

    /* Hero Section */
    .hero {
        display: flex;
        align-items: center;
        gap: 2rem;
        margin-bottom: 2rem;
    }

    .hero-left {
        flex: 1;
        padding: 1.5rem;
    }

    .hero-right {
        flex: 1;
        display: flex;
        align-items: center;
        justify-content: center;
    }

    .hero-right img {
        max-width: 100%;
        height: auto;
        border-radius: 8px;
        object-fit: cover;
    }

    .hero-title {
        font-size: 3rem;
        font-weight: 700;
        color: #1a202c;
        margin-bottom: 0.5rem;
    }

    .hero-text {
        font-size: 1.2rem;
        color: #4a5568;
        line-height: 1.5;
        max-width: 450px;
    }

    /* About Section */
    .about-section {
        margin-bottom: 2rem;
        text-align: center;
    }

    .about-title {
        font-size: 2.2rem;
        font-weight: 600;
        color: #1a202c;
        margin-bottom: 0.5rem;
    }

    .about-text {
        font-size: 1.1rem;
        color: #4a5568;
        line-height: 1.5;
        max-width: 600px;
        margin: 0 auto;
    }

    /* Input Section */
    .input-container {
        max-width: 800px;
        margin: 0 auto;
    }

    .stTextArea > div > div > textarea {
        border-radius: 8px !important;
        border: 1px solid #d1d5db !important;
        padding: 1rem !important;
        font-size: 1.1rem !important;
        font-family: 'Poppins', sans-serif !important;
        background: #ffffff !important;
        min-height: 150px !important;
        transition: all 0.2s ease !important;
    }

    .stTextArea > div > div > textarea:focus {
        border-color: #6366f1 !important;
        box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.1) !important;
        outline: none !important;
    }

    .stTextArea > div > div > textarea::placeholder {
        color: #9ca3af !important;
    }

    /* Button Styling */
    .stButton > button {
        background: #6366f1 !important;
        color: white !important;
        border-radius: 8px !important;
        padding: 0.75rem 2rem !important;
        font-size: 1.1rem !important;
        font-weight: 600 !important;
        font-family: 'Poppins', sans-serif !important;
        transition: all 0.2s ease !important;
        border: none !important;
        width: 100% !important;
    }

    .stButton > button:hover {
        background: #4f46e5 !important;
        transform: translateY(-1px) !important;
    }

    /* Results Section */
    .results-container {
        margin-top: 1rem;
        padding: 1rem;
        border-radius: 8px;
    }

    .result-card {
        padding: 1rem;
        border-radius: 8px;
        border-left: 4px solid transparent;
        margin-bottom: 1rem;
    }

    .fake-news {
        background: #fef2f2;
        border-left-color: #ef4444;
    }

    .real-news {
        background: #ecfdf5;
        border-left-color: #10b981;
    }

    .prediction-badge {
        font-weight: 600;
        font-size: 1.1rem;
        margin-bottom: 0.5rem;
        display: flex;
        align-items: center;
        gap: 0.5rem;
    }

    .confidence-score {
        font-weight: 600;
        margin-left: auto;
        font-size: 1.1rem;
    }

    /* Chart Containers */
    .chart-container {
        padding: 1rem;
        border-radius: 8px;
        margin: 1rem 0;
    }

    /* Sidebar Styling */
    .stSidebar {
        background: #ffffff;
        border-right: 1px solid #e5e7eb;
    }

    .stSidebar .sidebar-content {
        padding: 1rem;
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_model_and_tokenizer():
    """Load the model and tokenizer (cached)."""
    model = HybridFakeNewsDetector(
        bert_model_name=BERT_MODEL_NAME,
        lstm_hidden_size=LSTM_HIDDEN_SIZE,
        lstm_num_layers=LSTM_NUM_LAYERS,
        dropout_rate=DROPOUT_RATE
    )
    state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
    model_state_dict = model.state_dict()
    filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
    model.load_state_dict(filtered_state_dict, strict=False)
    model.eval()
    tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
    return model, tokenizer

@st.cache_resource
def get_preprocessor():
    """Get the text preprocessor (cached)."""
    return TextPreprocessor()

def predict_news(text):
    """Predict if the given news is fake or real."""
    model, tokenizer = load_model_and_tokenizer()
    preprocessor = get_preprocessor()
    processed_text = preprocessor.preprocess_text(text)
    encoding = tokenizer.encode_plus(
        processed_text,
        add_special_tokens=True,
        max_length=MAX_SEQUENCE_LENGTH,
        padding='max_length',
        truncation=True,
        return_attention_mask=True,
        return_tensors='pt'
    )
    with torch.no_grad():
        outputs = model(
            encoding['input_ids'],
            encoding['attention_mask']
        )
        probabilities = torch.softmax(outputs['logits'], dim=1)
        prediction = torch.argmax(outputs['logits'], dim=1)
        attention_weights = outputs['attention_weights']
    attention_weights_np = attention_weights[0].cpu().numpy()
    return {
        'prediction': prediction.item(),
        'label': 'FAKE' if prediction.item() == 1 else 'REAL',
        'confidence': torch.max(probabilities, dim=1)[0].item(),
        'probabilities': {
            'REAL': probabilities[0][0].item(),
            'FAKE': probabilities[0][1].item()
        },
        'attention_weights': attention_weights_np
    }

def plot_confidence(probabilities):
    """Plot prediction confidence with simplified styling."""
    fig = go.Figure(data=[
        go.Bar(
            x=list(probabilities.keys()),
            y=list(probabilities.values()),
            text=[f'{p:.1%}' for p in probabilities.values()],
            textposition='auto',
            marker=dict(
                color=['#10b981', '#ef4444'],
                line=dict(color='#ffffff', width=1),
            ),
        )
    ])
    fig.update_layout(
        title={'text': 'Prediction Confidence', 'x': 0.5, 'xanchor': 'center', 'font': {'size': 18}},
        xaxis=dict(title='Classification', titlefont={'size': 12}, tickfont={'size': 10}),
        yaxis=dict(title='Probability', range=[0, 1], tickformat='.0%', titlefont={'size': 12}, tickfont={'size': 10}),
        template='plotly_white',
        height=300,
        margin=dict(t=60, b=60)
    )
    return fig

def plot_attention(text, attention_weights):
    """Plot attention weights with simplified styling."""
    tokens = text.split()[:20]
    attention_weights = attention_weights[:len(tokens)]
    if isinstance(attention_weights, (list, np.ndarray)):
        attention_weights = np.array(attention_weights).flatten()
    normalized_weights = attention_weights / max(attention_weights) if max(attention_weights) > 0 else attention_weights
    colors = [f'rgba(99, 102, 241, {0.4 + 0.6 * float(w)})' for w in normalized_weights]
    fig = go.Figure(data=[
        go.Bar(
            x=tokens,
            y=attention_weights,
            text=[f'{float(w):.3f}' for w in attention_weights],
            textposition='auto',
            marker=dict(color=colors),
        )
    ])
    fig.update_layout(
        title={'text': 'Attention Weights', 'x': 0.5, 'xanchor': 'center', 'font': {'size': 18}},
        xaxis=dict(title='Words', tickangle=45, titlefont={'size': 12}, tickfont={'size': 10}),
        yaxis=dict(title='Attention Score', titlefont={'size': 12}, tickfont={'size': 10}),
        template='plotly_white',
        height=350,
        margin=dict(t=60, b=80)
    )
    return fig

def main():

    # Header
    st.markdown("""
    <div class="header">
        <div class="container">
            <h1 class="header-title">πŸ›‘οΈ TruthCheck</h1>
        </div>
    </div>
    """, unsafe_allow_html=True)

    # Hero Section
    st.markdown("""
    <div class="container">
        <div class="hero">
            <div class="hero-left">
                <h2 class="hero-title">Instant Fake News Detection</h2>
                <p class="hero-text">
                    Verify news articles with our AI-powered tool, driven by BERT and BiLSTM for fast and accurate authenticity analysis.
                </p>
            </div>
            <div class="hero-right">
                <img src="https://images.unsplash.com/photo-1593642532973-d31b97d0fad2?ixlib=rb-4.0.3&auto=format&fit=crop&w=500&q=80" alt="Fake News Detector" onerror="this.src='https://via.placeholder.com/500x300.png?text=Fake+News+Detector'">
            </div>
        </div>
    </div>
    """, unsafe_allow_html=True)

    # About Section
    st.markdown("""
    <div class="container">
        <div class="about-section">
            <h2 class="about-title">About TruthCheck</h2>
            <p class="about-text">
                TruthCheck uses a hybrid BERT-BiLSTM model to detect fake news with high accuracy. Paste an article below for instant analysis.
            </p>
        </div>
    </div>
    """, unsafe_allow_html=True)

    # Input Section
    st.markdown('<div class="container"><div class="input-container">', unsafe_allow_html=True)
    news_text = st.text_area(
        "Analyze a News Article",
        height=150,
        placeholder="Paste your news article here for instant AI analysis...",
        key="news_input"
    )
    st.markdown('</div>', unsafe_allow_html=True)

    # Analyze Button
    st.markdown('<div class="container">', unsafe_allow_html=True)
    col1, col2, col3 = st.columns([1, 2, 1])
    with col2:
        analyze_button = st.button("πŸ” Analyze Now", key="analyze_button")
    st.markdown('</div>', unsafe_allow_html=True)

    if analyze_button:
        if news_text and len(news_text.strip()) > 10:
            with st.spinner("Analyzing article..."):
                try:
                    result = predict_news(news_text)
                    st.markdown('<div class="container"><div class="results-container">', unsafe_allow_html=True)
                    
                    # Prediction Result
                    col1, col2 = st.columns([1, 1], gap="medium")
                    with col1:
                        if result['label'] == 'FAKE':
                            st.markdown(f'''
                            <div class="result-card fake-news">
                                <div class="prediction-badge">🚨 Fake News Detected <span class="confidence-score">{result["confidence"]:.1%}</span></div>
                                <p>Our AI has identified this content as likely misinformation based on linguistic patterns and content analysis.</p>
                            </div>
                            ''', unsafe_allow_html=True)
                        else:
                            st.markdown(f'''
                            <div class="result-card real-news">
                                <div class="prediction-badge">βœ… Authentic News <span class="confidence-score">{result["confidence"]:.1%}</span></div>
                                <p>This content appears to be legitimate based on professional writing style and factual consistency.</p>
                            </div>
                            ''', unsafe_allow_html=True)
                    
                    with col2:
                        st.markdown('<div class="chart-container">', unsafe_allow_html=True)
                        st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                    
                    # Attention Analysis
                    st.markdown('<div class="chart-container">', unsafe_allow_html=True)
                    st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
                    st.markdown('</div></div></div>', unsafe_allow_html=True)
                except Exception as e:
                    st.markdown('<div class="container">', unsafe_allow_html=True)
                    st.error(f"Error: {str(e)}. Please try again or contact support.")
                    st.markdown('</div>', unsafe_allow_html=True)
        else:
            st.markdown('<div class="container">', unsafe_allow_html=True)
            st.error("Please enter a news article (at least 10 words) for analysis.")
            st.markdown('</div>', unsafe_allow_html=True)

if __name__ == "__main__":
    main()