File size: 16,377 Bytes
469c254
 
 
 
 
 
 
 
 
 
 
5edf4ff
 
 
 
 
 
 
 
 
 
 
469c254
 
 
 
 
 
5edf4ff
469c254
 
5edf4ff
0baf4d0
 
7e2f2a1
f184bba
22d148d
5edf4ff
22d148d
 
f184bba
0baf4d0
5edf4ff
0baf4d0
5edf4ff
0baf4d0
f184bba
5edf4ff
0baf4d0
 
 
22d148d
f184bba
5edf4ff
 
2ddd46f
f184bba
5edf4ff
f184bba
 
5edf4ff
 
2ddd46f
5edf4ff
 
22d148d
f184bba
 
5edf4ff
7e2f2a1
5edf4ff
 
22d148d
f184bba
0baf4d0
f184bba
 
dbdcde9
2ddd46f
 
5edf4ff
22d148d
f184bba
 
 
7e2f2a1
f184bba
 
 
 
22d148d
f184bba
22d148d
 
f184bba
 
 
 
2ddd46f
7e2f2a1
22d148d
f184bba
 
5edf4ff
2ddd46f
5edf4ff
2ddd46f
22d148d
f184bba
 
5edf4ff
 
 
2ddd46f
0baf4d0
f184bba
 
 
2ddd46f
0baf4d0
5edf4ff
0baf4d0
f184bba
 
5edf4ff
2ddd46f
5edf4ff
2ddd46f
0baf4d0
f184bba
 
5edf4ff
 
 
2ddd46f
f184bba
0baf4d0
f184bba
 
22d148d
2ddd46f
22d148d
0baf4d0
f184bba
0baf4d0
2ddd46f
dbdcde9
2ddd46f
5edf4ff
2ddd46f
 
 
0baf4d0
f184bba
0baf4d0
dbdcde9
2ddd46f
22d148d
0baf4d0
f184bba
dbdcde9
 
 
 
 
0baf4d0
2ddd46f
22d148d
2ddd46f
 
5edf4ff
dbdcde9
2ddd46f
dbdcde9
2ddd46f
5edf4ff
0baf4d0
f184bba
0baf4d0
2ddd46f
 
0baf4d0
f184bba
0baf4d0
22d148d
2ddd46f
 
 
5edf4ff
 
 
22d148d
f184bba
0baf4d0
2ddd46f
 
 
dbdcde9
22d148d
f184bba
22d148d
f184bba
 
22d148d
f184bba
22d148d
dbdcde9
 
22d148d
f184bba
 
22d148d
5edf4ff
2ddd46f
dbdcde9
 
 
22d148d
f184bba
 
 
 
5edf4ff
22d148d
f184bba
22d148d
 
2ddd46f
 
 
5edf4ff
 
 
0baf4d0
f184bba
5edf4ff
 
 
 
 
 
 
2ddd46f
 
5edf4ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0baf4d0
 
 
 
469c254
5edf4ff
469c254
5edf4ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469c254
 
5edf4ff
469c254
5edf4ff
 
 
 
 
469c254
5edf4ff
469c254
 
5edf4ff
 
469c254
5edf4ff
 
 
 
 
 
 
 
 
 
 
 
469c254
5edf4ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f184bba
5edf4ff
 
469c254
 
 
 
22d148d
469c254
22d148d
dbdcde9
f184bba
22d148d
469c254
 
 
2ddd46f
 
 
0baf4d0
2ddd46f
 
469c254
 
 
5edf4ff
f184bba
5edf4ff
 
f184bba
7bb7bdc
469c254
 
f184bba
dbdcde9
469c254
 
 
 
22d148d
469c254
f184bba
469c254
 
 
2ddd46f
 
 
 
 
 
469c254
 
 
 
5edf4ff
 
2ddd46f
5edf4ff
22d148d
5edf4ff
 
22d148d
 
 
0baf4d0
7bb7bdc
5edf4ff
 
 
 
 
 
 
 
 
7bb7bdc
 
 
 
f184bba
0baf4d0
5edf4ff
 
 
 
 
f184bba
7bb7bdc
 
0baf4d0
5edf4ff
22d148d
dbdcde9
2ddd46f
dbdcde9
f184bba
22d148d
f184bba
 
 
22d148d
0baf4d0
dbdcde9
0baf4d0
 
22d148d
f184bba
5edf4ff
 
 
22d148d
f184bba
dbdcde9
22d148d
 
 
 
dbdcde9
5edf4ff
22d148d
 
 
 
 
dbdcde9
5edf4ff
22d148d
 
 
 
 
 
 
 
 
 
 
5edf4ff
469c254
f184bba
5edf4ff
 
 
 
 
 
 
 
 
22d148d
469c254
7bb7bdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import streamlit as st
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import sys
import plotly.graph_objects as go
from transformers import BertTokenizer
import nltk

# Download required NLTK data
nltk_data = {
    'tokenizers/punkt': 'punkt',
    'corpora/stopwords': 'stopwords',
    'tokenizers/punkt_tab': 'punkt_tab',
    'corpora/wordnet': 'wordnet'
}
for resource, package in nltk_data.items():
    try:
        nltk.data.find(resource)
    except LookupError:
        nltk.download(package)

# Add project root to Python path
project_root = Path(__file__).parent.parent
sys.path.append(str(project_root))

from src.models.hybrid_model import HybridFakeNewsDetector
from src.config.config import BERT_MODEL_NAME, LSTM_HIDDEN_SIZE, LSTM_NUM_LAYERS, DROPOUT_RATE, SAVED_MODELS_DIR, MAX_SEQUENCE_LENGTH
from src.data.preprocessor import TextPreprocessor

# Custom CSS with Poppins font
st.markdown("""
<style>
    @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;500;600;700&display=swap');

    * {
        font-family: 'Poppins', sans-serif !important;
        box-sizing: border-box;
    }

    .stApp {
        background: #ffffff;
        min-height: 100vh;
        color: #1f2a44;
    }

    #MainMenu {visibility: hidden;}
    footer {visibility: hidden;}
    .stDeployButton {display: none;}
    header {visibility: hidden;}
    .stApp > header {visibility: hidden;}

    /* Main Container */
    .main-container {
        max-width: 1200px;
        margin: 0 auto;
        padding: 1rem 2rem;
    }

    /* Header Section */
    .header-section {
        text-align: center;
        margin-bottom: 2.5rem;
        padding: 1.5rem 0;
    }

    .header-title {
        font-size: 2.25rem;
        font-weight: 700;
        color: #1f2a44;
        margin: 0;
    }

    /* Hero Section */
    .hero {
        display: flex;
        align-items: center;
        gap: 2rem;
        margin-bottom: 2rem;
        padding: 0 1rem;
    }

    .hero-left {
        flex: 1;
        padding: 1.5rem;
    }

    .hero-right {
        flex: 1;
        display: flex;
        align-items: center;
        justify-content: center;
    }

    .hero-right img {
        max-width: 100%;
        height: auto;
        border-radius: 8px;
        object-fit: cover;
    }

    .hero-title {
        font-size: 2.5rem;
        font-weight: 700;
        color: #1f2a44;
        margin-bottom: 0.5rem;
    }

    .hero-text {
        font-size: 1rem;
        color: #6b7280;
        line-height: 1.6;
        max-width: 450px;
    }

    /* About Section */
    .about-section {
        margin-bottom: 2rem;
        text-align: center;
        padding: 0 1rem;
    }

    .about-title {
        font-size: 1.75rem;
        font-weight: 600;
        color: #1f2a44;
        margin-bottom: 0.5rem;
    }

    .about-text {
        font-size: 0.95rem;
        color: #6b7280;
        line-height: 1.6;
        max-width: 600px;
        margin: 0 auto;
    }

    /* Input Section */
    .input-container {
        max-width: 800px;
        margin: 0 auto;
    }

    .stTextArea > div > div > textarea {
        border-radius: 8px !important;
        border: 1px solid #d1d5db !important;
        padding: 1rem !important;
        font-size: 1rem !important;
        background: #ffffff !important;
        min-height: 150px !important;
        transition: all 0.2s ease !important;
    }

    .stTextArea > div > div > textarea:focus {
        border-color: #6366f1 !important;
        box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.1) !important;
        outline: none !important;
    }

    .stTextArea > div > div > textarea::placeholder {
        color: #9ca3af !important;
    }

    /* Button Styling */
    .stButton > button {
        background: #6366f1 !important;
        color: white !important;
        border-radius: 8px !important;
        padding: 0.75rem 2rem !important;
        font-size: 1rem !important;
        font-weight: 600 !important;
        transition: all 0.2s ease !important;
        border: none !important;
        width: 100% !important;
        max-width: 300px;
    }

    .stButton > button:hover {
        background: #4f46e5 !important;
        transform: translateY(-1px) !important;
    }

    /* Results Section */
    .results-container {
        margin-top: 1rem;
        padding: 1rem;
        border-radius: 8px;
        max-width: 1200px;
        margin-left: auto;
        margin-right: auto;
    }

    .result-card {
        padding: 1rem;
        border-radius: 8px;
        border-left: 4px solid transparent;
        margin-bottom: 1rem;
    }

    .fake-news {
        background: #fef2f2;
        border-left-color: #ef4444;
    }

    .real-news {
        background: #ecfdf5;
        border-left-color: #10b981;
    }

    .prediction-badge {
        font-weight: 600;
        font-size: 1rem;
        margin-bottom: 0.5rem;
        display: flex;
        align-items: center;
        gap: 0.5rem;
    }

    .confidence-score {
        font-weight: 600;
        margin-left: auto;
        font-size: 1rem;
    }

    /* Chart Containers */
    .chart-container {
        padding: 1rem;
        border-radius: 8px;
        margin: 1rem 0;
        max-width: 1200px;
        margin-left: auto;
        margin-right: auto;
    }

    /* Footer */
    .footer {
        border-top: 1px solid #e5e7eb;
        padding: 1.5rem 0;
        text-align: center;
        max-width: 1200px;
        margin: 2rem auto 0;
    }

    /* Responsive Design */
    @media (max-width: 1024px) {
        .hero {
            flex-direction: column;
            text-align: center;
        }
        .hero-right img {
            max-width: 80%;
        }
    }

    @media (max-width: 768px) {
        .header-title {
            font-size: 1.75rem;
        }
        .hero-title {
            font-size: 2rem;
        }
        .hero-text {
            font-size: 0.9rem;
        }
        .about-title {
            font-size: 1.5rem;
        }
        .about-text {
            font-size: 0.9rem;
        }
    }

    @media (max-width: 480px) {
        .header-title {
            font-size: 1.5rem;
        }
        .hero-title {
            font-size: 1.75rem;
        }
        .hero-text {
            font-size: 0.85rem;
        }
        .about-title {
            font-size: 1.25rem;
        }
        .about-text {
            font-size: 0.85rem;
        }
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_model_and_tokenizer() -> tuple[HybridFakeNewsDetector, BertTokenizer] | tuple[None, None]:
    """Load the model and tokenizer (cached)."""
    try:
        model = HybridFakeNewsDetector(
            bert_model_name=BERT_MODEL_NAME,
            lstm_hidden_size=LSTM_HIDDEN_SIZE,
            lstm_num_layers=LSTM_NUM_LAYERS,
            dropout_rate=DROPOUT_RATE
        )
        model_path = SAVED_MODELS_DIR / "final_model.pt"
        if not model_path.exists():
            st.error("Model file not found. Please ensure 'final_model.pt' is in the models/saved directory.")
            return None, None
        state_dict = torch.load(model_path, map_location=torch.device('cpu'))
        model_state_dict = model.state_dict()
        filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
        model.load_state_dict(filtered_state_dict, strict=False)
        model.eval()
        tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
        return model, tokenizer
    except Exception as e:
        st.error(f"Error loading model or tokenizer: {str(e)}")
        return None, None

@st.cache_resource
def get_preprocessor() -> TextPreprocessor | None:
    """Get the text preprocessor (cached)."""
    try:
        return TextPreprocessor()
    except Exception as e:
        st.error(f"Error initializing preprocessor: {str(e)}")
        return None

def predict_news(text: str) -> dict | None:
    """Predict if the given news is fake or real."""
    model, tokenizer = load_model_and_tokenizer()
    if model is None or tokenizer is None:
        return None
    preprocessor = get_preprocessor()
    if preprocessor is None:
        return None
    try:
        processed_text = preprocessor.preprocess_text(text)
        encoding = tokenizer.encode_plus(
            processed_text,
            add_special_tokens=True,
            max_length=MAX_SEQUENCE_LENGTH,
            padding='max_length',
            truncation=True,
            return_attention_mask=True,
            return_tensors='pt'
        )
        with torch.no_grad():
            outputs = model(
                encoding['input_ids'],
                encoding['attention_mask']
            )
            probabilities = torch.softmax(outputs['logits'], dim=1)
            prediction = torch.argmax(outputs['logits'], dim=1)
            attention_weights = outputs.get('attention_weights', torch.zeros(1))
        attention_weights_np = attention_weights[0].cpu().numpy()
        return {
            'prediction': prediction.item(),
            'label': 'FAKE' if prediction.item() == 1 else 'REAL',
            'confidence': torch.max(probabilities, dim=1)[0].item(),
            'probabilities': {
                'REAL': probabilities[0][0].item(),
                'FAKE': probabilities[0][1].item()
            },
            'attention_weights': attention_weights_np
        }
    except Exception as e:
        st.error(f"Prediction error: {str(e)}")
        return None

def plot_confidence(probabilities: dict) -> go.Figure:
    """Plot prediction confidence with simplified styling."""
    if not probabilities or not isinstance(probabilities, dict):
        return go.Figure()
    fig = go.Figure(data=[
        go.Bar(
            x=list(probabilities.keys()),
            y=list(probabilities.values()),
            text=[f'{p:.1%}' for p in probabilities.values()],
            textposition='auto',
            marker=dict(
                color=['#10b981', '#ef4444'],
                line=dict(color='#ffffff', width=1),
            ),
        )
    ])
    fig.update_layout(
        title={'text': 'Prediction Confidence', 'x': 0.5, 'xanchor': 'center', 'font': {'size': 18}},
        xaxis=dict(title='Classification', titlefont={'size': 12}, tickfont={'size': 10}),
        yaxis=dict(title='Probability', range=[0, 1], tickformat='.0%', titlefont={'size': 12}, tickfont={'size': 10}),
        template='plotly_white',
        height=300,
        margin=dict(t=60, b=60)
    )
    return fig

def plot_attention(text: str, attention_weights: np.ndarray) -> go.Figure:
    """Plot attention weights with simplified styling."""
    if not text or not attention_weights.size:
        return go.Figure()
    tokens = text.split()[:20]
    attention_weights = attention_weights[:len(tokens)]
    if isinstance(attention_weights, (list, np.ndarray)):
        attention_weights = np.array(attention_weights).flatten()
    normalized_weights = attention_weights / max(attention_weights) if max(attention_weights) > 0 else attention_weights
    colors = [f'rgba(99, 102, 241, {0.4 + 0.6 * float(w)})' for w in normalized_weights]
    fig = go.Figure(data=[
        go.Bar(
            x=tokens,
            y=attention_weights,
            text=[f'{float(w):.3f}' for w in attention_weights],
            textposition='auto',
            marker=dict(color=colors),
        )
    ])
    fig.update_layout(
        title={'text': 'Attention Weights', 'x': 0.5, 'xanchor': 'center', 'font': {'size': 18}},
        xaxis=dict(title='Words', tickangle=45, titlefont={'size': 12}, tickfont={'size': 10}),
        yaxis=dict(title='Attention Score', titlefont={'size': 12}, tickfont={'size': 10}),
        template='plotly_white',
        height=350,
        margin=dict(t=60, b=80)
    )
    return fig

def main():
    # Main Container
    st.markdown('<div class="main-container">', unsafe_allow_html=True)

    # Header Section
    st.markdown("""
    <div class="header-section">
        <h1 class="header-title">🛡️ TruthCheck - Advanced Fake News Detector</h1>
    </div>
    """, unsafe_allow_html=True)

    # Hero Section
    st.markdown("""
    <div class="hero">
        <div class="hero-left">
            <h2 class="hero-title">Instant Fake News Detection</h2>
            <p class="hero-text">
                Verify news articles with our AI-powered tool, driven by advanced BERT and BiLSTM models for accurate authenticity analysis.
            </p>
        </div>
        <div class="hero-right">
            <img src="https://images.pexels.com/photos/267350/pexels-photo-267350.jpeg?auto=compress&cs=tinysrgb&w=500" alt="Fake News Illustration" onerror="this.src='https://via.placeholder.com/500x300.png?text=Fake+News+Illustration'">
        </div>
    </div>
    """, unsafe_allow_html=True)

    # About Section
    st.markdown("""
    <div class="about-section">
        <h2 class="about-title">About TruthCheck</h2>
        <p class="about-text">
            TruthCheck harnesses a hybrid BERT-BiLSTM model to detect fake news with high precision. Simply paste an article below to analyze its authenticity instantly.
        </p>
    </div>
    """, unsafe_allow_html=True)

    # Input Section
    st.markdown('<div class="input-container">', unsafe_allow_html=True)
    news_text = st.text_area(
        "Analyze a News Article",
        height=150,
        placeholder="Paste your news article here for instant AI analysis...",
        key="news_input"
    )
    st.markdown('</div>', unsafe_allow_html=True)

    # Analyze Button
    col1, col2, col3 = st.columns([1, 2, 1])
    with col2:
        analyze_button = st.button("🔍 Analyze Now", key="analyze_button")

    if analyze_button:
        if news_text and len(news_text.strip()) > 10:
            with st.spinner("Analyzing article..."):
                result = predict_news(news_text)
                if result:
                    st.markdown('<div class="results-container">', unsafe_allow_html=True)
                    
                    # Prediction Result
                    col1, col2 = st.columns([1, 1], gap="medium")
                    with col1:
                        if result['label'] == 'FAKE':
                            st.markdown(f'''
                            <div class="result-card fake-news">
                                <div class="prediction-badge">🚨 Fake News Detected <span class="confidence-score">{result["confidence"]:.1%}</span></div>
                                <p>Our AI has identified this content as likely misinformation based on linguistic patterns and context.</p>
                            </div>
                            ''', unsafe_allow_html=True)
                        else:
                            st.markdown(f'''
                            <div class="result-card real-news">
                                <div class="prediction-badge">✅ Authentic News <span class="confidence-score">{result["confidence"]:.1%}</span></div>
                                <p>This content appears legitimate based on professional writing style and factual consistency.</p>
                            </div>
                            ''', unsafe_allow_html=True)
                    
                    with col2:
                        st.markdown('<div class="chart-container">', unsafe_allow_html=True)
                        st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                    
                    # Attention Analysis
                    st.markdown('<div class="chart-container">', unsafe_allow_html=True)
                    st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
                    st.markdown('</div></div>', unsafe_allow_html=True)
        else:
            st.error("Please enter a news article (at least 10 words) for analysis.")

    # Footer
    st.markdown("---")
    st.markdown(
        '<p style="text-align: center; font-weight: 600; font-size: 16px;">💻 Developed with ❤️ using Streamlit | © 2025</p>',
        unsafe_allow_html=True
    )

    st.markdown('</div>', unsafe_allow_html=True)  # Close main-container

if __name__ == "__main__":
    main()