Spaces:
Runtime error
Runtime error
File size: 3,972 Bytes
9798f2a 95c8cbd 9798f2a 56a4e54 53281eb 9798f2a 727371a 9798f2a 3cc4e4b 9798f2a a1a6b25 3cc4e4b a1a6b25 9798f2a a1a6b25 9798f2a 431dc6f 727371a abd7ad6 727371a 2afae35 a1a6b25 aa84ff5 2afae35 9798f2a 727371a 9798f2a abd7ad6 2afae35 aa84ff5 85fd9d1 a1a6b25 85fd9d1 3e0d108 abd7ad6 2afae35 abd7ad6 3e0d108 abd7ad6 3e0d108 85fd9d1 3e0d108 c44d97e fad5328 53d690d 9798f2a 85fd9d1 9798f2a a1a6b25 9798f2a fad5328 9798f2a b80f4e7 a1a6b25 9798f2a fad5328 53281eb fad5328 f56f57c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import requests
from PIL import Image
from io import BytesIO
import base64
import gradio as gr
from transformers import CLIPProcessor, CLIPModel
import numpy as np
import time
# Replace with your own API key
STABLE_DIFFUSION_API_KEY = "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"
# Load the CLIP model and processor
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def get_mood_from_image(image: Image.Image):
moods = ["scared", "angry", "happy", "sad", "disgusted", "surprised"]
# Create unique prompts for each mood
prompts = [
"The emotion conveyed by this image is fear. The person looks scared and tense.",
"The emotion conveyed by this image is anger. The person looks furious and irritated.",
"The emotion conveyed by this image is happy. The person looks happy and cheerful.",
"The emotion conveyed by this image is sadness. The person looks unhappy and gloomy.",
"The emotion conveyed by this image is disgust. The person looks repulsed and sickened.",
"The emotion conveyed by this image is surprise. The person looks astonished and amazed.",
]
# Prepare the inputs for the model
inputs = processor(text=prompts, images=image, return_tensors="pt", padding=True)
# Run the model
logits = model(**inputs).logits_per_image
probs = logits.softmax(dim=-1).tolist()
# Calculate the scores for each mood
mood_scores = {}
for mood, score in zip(moods, probs[0]):
mood_scores[mood] = score
print("Mood Scores:", mood_scores)
# Select the mood with the highest score
selected_mood = max(mood_scores, key=mood_scores.get)
return selected_mood
def is_black_image(image: Image.Image) -> bool:
img_array = np.array(image)
return np.all(img_array == 0)
def generate_art(mood, max_retries=3, request_timeout=30):
prompt = f"{mood} generative art with vibrant colors and intricate patterns ({str(np.random.randint(1, 10000))})"
headers = {
"Authorization": f"Bearer {STABLE_DIFFUSION_API_KEY}",
"Accept": "image/jpeg",
}
json_data = {
"inputs": prompt
}
retries = 0
while retries < max_retries:
try:
response = requests.post('https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5', headers=headers, json=json_data, timeout=request_timeout)
except requests.exceptions.Timeout:
print(f"Request timed out after {request_timeout} seconds. Retrying...")
retries += 1
continue
if response.status_code == 503:
print("Model is loading, waiting for 30 seconds before retrying...")
time.sleep(30)
continue
if response.status_code != 200:
print(f"Error: API response status code {response.status_code}")
print("Response content:")
print(response.content)
return None
image = Image.open(BytesIO(response.content))
if not is_black_image(image):
break
retries += 1
if retries == max_retries:
return None
return image
def mood_art_generator(image):
mood = get_mood_from_image(image)
print("Mood:", mood)
if mood:
art = generate_art(mood)
output_text = f"You seem to be {mood}. Here's an artwork representing it!"
return art, output_text
else:
return None, "Failed to generate artwork."
iface = gr.Interface(
fn=mood_art_generator,
inputs=gr.inputs.Image(shape=(224, 224), image_mode="RGB", source="upload"),
outputs=[gr.outputs.Image(type="pil"), gr.outputs.Textbox()],
title="Mood-based Art Generator",
description="Upload an image of yourself and let the AI generate artwork based on your mood.",
allow_flagging=False,
analytics_enabled=False,
share=True
)
iface.launch()
|