File size: 3,972 Bytes
9798f2a
95c8cbd
9798f2a
 
 
 
56a4e54
53281eb
9798f2a
 
 
727371a
 
 
9798f2a
 
 
3cc4e4b
9798f2a
a1a6b25
 
 
 
3cc4e4b
a1a6b25
 
 
 
9798f2a
 
a1a6b25
9798f2a
 
431dc6f
727371a
 
 
 
 
 
 
 
 
 
 
abd7ad6
 
 
727371a
2afae35
a1a6b25
 
 
aa84ff5
2afae35
9798f2a
727371a
 
9798f2a
 
 
abd7ad6
 
2afae35
 
 
 
 
 
aa84ff5
85fd9d1
 
 
 
a1a6b25
85fd9d1
 
 
 
 
3e0d108
abd7ad6
2afae35
abd7ad6
 
3e0d108
abd7ad6
 
 
 
3e0d108
85fd9d1
3e0d108
c44d97e
fad5328
53d690d
9798f2a
85fd9d1
 
 
9798f2a
a1a6b25
9798f2a
fad5328
9798f2a
b80f4e7
a1a6b25
9798f2a
fad5328
 
53281eb
 
fad5328
f56f57c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import requests
from PIL import Image
from io import BytesIO
import base64
import gradio as gr
from transformers import CLIPProcessor, CLIPModel
import numpy as np
import time

# Replace with your own API key
STABLE_DIFFUSION_API_KEY = "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"

# Load the CLIP model and processor
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

def get_mood_from_image(image: Image.Image):
    moods = ["scared", "angry", "happy", "sad", "disgusted", "surprised"]
    
    # Create unique prompts for each mood
    prompts = [
        "The emotion conveyed by this image is fear. The person looks scared and tense.",
        "The emotion conveyed by this image is anger. The person looks furious and irritated.",
        "The emotion conveyed by this image is happy. The person looks happy and cheerful.",
        "The emotion conveyed by this image is sadness. The person looks unhappy and gloomy.",
        "The emotion conveyed by this image is disgust. The person looks repulsed and sickened.",
        "The emotion conveyed by this image is surprise. The person looks astonished and amazed.",
    ]
    
    # Prepare the inputs for the model
    inputs = processor(text=prompts, images=image, return_tensors="pt", padding=True)
    
    # Run the model
    logits = model(**inputs).logits_per_image
    probs = logits.softmax(dim=-1).tolist()

    # Calculate the scores for each mood
    mood_scores = {}
    for mood, score in zip(moods, probs[0]):
        mood_scores[mood] = score
    print("Mood Scores:", mood_scores)
    # Select the mood with the highest score
    selected_mood = max(mood_scores, key=mood_scores.get)

    return selected_mood
def is_black_image(image: Image.Image) -> bool:
    img_array = np.array(image)
    return np.all(img_array == 0)

def generate_art(mood, max_retries=3, request_timeout=30):
    prompt = f"{mood} generative art with vibrant colors and intricate patterns ({str(np.random.randint(1, 10000))})"
    
    headers = {
        "Authorization": f"Bearer {STABLE_DIFFUSION_API_KEY}",
        "Accept": "image/jpeg",
    }

    json_data = {
        "inputs": prompt
    }

    retries = 0
    while retries < max_retries:
        try:
            response = requests.post('https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5', headers=headers, json=json_data, timeout=request_timeout)
        except requests.exceptions.Timeout:
            print(f"Request timed out after {request_timeout} seconds. Retrying...")
            retries += 1
            continue

        if response.status_code == 503:
            print("Model is loading, waiting for 30 seconds before retrying...")
            time.sleep(30)
            continue

        if response.status_code != 200:
            print(f"Error: API response status code {response.status_code}")
            print("Response content:")
            print(response.content)
            return None

        image = Image.open(BytesIO(response.content))

        if not is_black_image(image):
            break

        retries += 1

    if retries == max_retries:
        return None

    return image

def mood_art_generator(image):
    mood = get_mood_from_image(image)
    print("Mood:", mood)
    if mood:
        art = generate_art(mood)
        output_text = f"You seem to be {mood}. Here's an artwork representing it!"
        return art, output_text
    else:
        return None, "Failed to generate artwork."

iface = gr.Interface(
    fn=mood_art_generator,
    inputs=gr.inputs.Image(shape=(224, 224), image_mode="RGB", source="upload"),
    outputs=[gr.outputs.Image(type="pil"), gr.outputs.Textbox()],
    title="Mood-based Art Generator",
    description="Upload an image of yourself and let the AI generate artwork based on your mood.",
    allow_flagging=False,
    analytics_enabled=False,
    share=True
)
iface.launch()