Spaces:
Runtime error
Runtime error
File size: 1,309 Bytes
f806208 4507cbc f806208 67ce37f 354b2ce f806208 67ce37f 4507cbc 67ce37f 4507cbc 9ae64d7 67ce37f f806208 67ce37f 3858fe6 67ce37f 3858fe6 67ce37f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the fine-tuned model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("ahmed-7124/dgptAW")
model = AutoModelForCausalLM.from_pretrained("ahmed-7124/dgptAW")
# Function to generate response from the model
def doctor_consultant(query):
# Encode the input query and generate the model's response
inputs = tokenizer(query, return_tensors="pt")
outputs = model.generate(inputs['input_ids'], max_length=200, num_return_sequences=1, no_repeat_ngram_size=2, top_p=0.95, temperature=0.7)
# Decode the output and return the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("# Doctor Consultant Assistant")
with gr.Row():
gr.Textbox(label="Ask the Doctor", placeholder="Enter your symptoms or question", lines=3, elem_id="input_text")
with gr.Row():
gr.Button("Get Response", elem_id="response_button")
with gr.Row():
gr.Textbox(label="Doctor's Response", elem_id="response_output", interactive=False)
# Connect the function to the interface
gr.Interface(fn=doctor_consultant, inputs="text", outputs="text").launch(share=True)
|