Spaces:
Running
Running
File size: 2,912 Bytes
078cd45 c6d85c0 078cd45 c6d85c0 078cd45 c6d85c0 afbb2d7 c6d85c0 afbb2d7 078cd45 afbb2d7 078cd45 afbb2d7 078cd45 c6d85c0 078cd45 afbb2d7 078cd45 afbb2d7 078cd45 c6d85c0 afbb2d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# Import required libraries
import streamlit as st
import torch
from medigan import Generators
from torchvision.transforms.functional import to_pil_image
# Apply critical patch for PGGAN model compatibility
def apply_pggan_patch():
try:
from model19.base_GAN import BaseGAN
# Monkey-patch the BaseGAN class initialization
original_init = BaseGAN.__init__
def patched_init(self, dimLatentVector, **kwargs):
original_init(self, dimLatentVector, **kwargs)
# Force correct optimizer parameters
self.optimizerG = torch.optim.Adam(
self.netG.parameters(),
lr=0.0002,
betas=(0.5, 0.999) # Explicit tuple of floats
)
self.optimizerD = torch.optim.Adam(
self.netD.parameters(),
lr=0.0002,
betas=(0.5, 0.999) # Explicit tuple of floats
)
BaseGAN.__init__ = patched_init
st.success("Applied PGGAN compatibility patch!")
except Exception as e:
st.warning(f"Patching failed: {str(e)}")
# Model configuration
MODEL_IDS = [
"00001_DCGAN_MMG_CALC_ROI",
"00002_DCGAN_MMG_MASS_ROI",
"00003_CYCLEGAN_MMG_DENSITY_FULL",
"00004_PIX2PIX_MMG_MASSES_W_MASKS",
"00019_PGGAN_CHEST_XRAY"
]
def main():
st.set_page_config(page_title="MEDIGAN Generator", layout="wide")
st.title("🧠 Medical Image Generator")
# Sidebar controls
with st.sidebar:
st.header("⚙️ Settings")
model_id = st.selectbox("Select Model", MODEL_IDS)
num_images = st.slider("Number of Images", 1, 8, 4)
generate_btn = st.button("✨ Generate Images")
# Main content area
if generate_btn:
with st.spinner(f"Generating {num_images} images..."):
try:
generate_images(num_images, model_id)
except Exception as e:
st.error(f"Generation failed: {str(e)}")
def generate_images(num_images, model_id):
# Apply model-specific patches
if "00019" in model_id:
apply_pggan_patch()
# Initialize generator
generators = Generators()
# Generate and display images
cols = st.columns(4)
for i in range(num_images):
with cols[i % 4]:
try:
# Generate single sample
sample = generators.generate(
model_id=model_id,
num_samples=1,
install_dependencies=True
)
img = to_pil_image(sample[0]).convert("RGB")
st.image(img, caption=f"Image {i+1}", use_column_width=True)
st.markdown("---")
except Exception as e:
st.error(f"Error generating image {i+1}: {str(e)}")
if __name__ == "__main__":
main() |