Spaces:
Runtime error
Runtime error
File size: 1,823 Bytes
5266797 2fcb420 315691e 2fcb420 3b3c5cf 5266797 2fcb420 5266797 3b3c5cf 315691e 2fcb420 315691e 2fcb420 315691e 5266797 315691e 2fcb420 315691e 2fcb420 315691e 2fcb420 5266797 2fcb420 315691e 2fcb420 5266797 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import gradio as gr
# Model and tokenizer paths
model_name = "ahmedbasemdev/llama-3.2-3b-ChatBot"
# Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # Enable 4-bit quantization
bnb_4bit_use_double_quant=True, # Use double quantization
bnb_4bit_quant_type="nf4", # Use NF4 quantization type for better accuracy
)
# Load the model with 4-bit quantization
print("Loading the quantized model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto", # Automatically map to available device (CPU)
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define the inference function
def single_inference(question):
messages = []
messages.append({"role": "user", "content": question})
# Tokenize the input
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device) # Ensure it runs on the correct device
# Generate a response
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.2,
)
response = outputs[0][input_ids.shape[-1]:]
output = tokenizer.decode(response, skip_special_tokens=True)
return output
# Gradio interface
print("Setting up Gradio app...")
interface = gr.Interface(
fn=single_inference,
inputs="text",
outputs="text",
title="Quantized Chatbot",
description="Ask me anything!"
)
# Launch the Gradio app
interface.launch() |