File size: 1,823 Bytes
5266797
2fcb420
315691e
2fcb420
3b3c5cf
 
5266797
 
 
 
 
 
2fcb420
5266797
 
 
 
 
 
3b3c5cf
 
 
315691e
 
2fcb420
315691e
 
 
 
2fcb420
315691e
 
 
 
5266797
315691e
2fcb420
315691e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fcb420
 
315691e
2fcb420
 
 
5266797
2fcb420
315691e
 
2fcb420
5266797
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import gradio as gr

# Model and tokenizer paths
model_name = "ahmedbasemdev/llama-3.2-3b-ChatBot"

# Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,  # Enable 4-bit quantization
    bnb_4bit_use_double_quant=True,  # Use double quantization
    bnb_4bit_quant_type="nf4",  # Use NF4 quantization type for better accuracy
)

# Load the model with 4-bit quantization
print("Loading the quantized model...")
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map="auto",  # Automatically map to available device (CPU)
)

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Define the inference function
def single_inference(question):
    messages = []
    messages.append({"role": "user", "content": question})

    # Tokenize the input
    input_ids = tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)  # Ensure it runs on the correct device

    # Generate a response
    terminators = [
        tokenizer.eos_token_id,
        tokenizer.convert_tokens_to_ids("<|eot_id|>")
    ]

    outputs = model.generate(
        input_ids,
        max_new_tokens=256,
        eos_token_id=terminators,
        do_sample=True,
        temperature=0.2,
    )
    response = outputs[0][input_ids.shape[-1]:]
    output = tokenizer.decode(response, skip_special_tokens=True)
    return output

# Gradio interface
print("Setting up Gradio app...")
interface = gr.Interface(
    fn=single_inference,
    inputs="text",
    outputs="text",
    title="Quantized Chatbot",
    description="Ask me anything!"
)

# Launch the Gradio app
interface.launch()