File size: 52,516 Bytes
d129378
 
 
 
 
 
 
b68ab8a
 
f4bfa4e
 
32efa22
d129378
b4c56a0
 
32efa22
b4c56a0
 
32efa22
b4c56a0
32efa22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4c56a0
 
 
d129378
32efa22
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
d8bbec8
 
 
15531e3
925914f
f4bfa4e
 
 
 
d8bbec8
15531e3
 
 
 
 
925914f
51a3e6d
f4bfa4e
 
 
 
925914f
f4bfa4e
 
 
 
 
 
 
925914f
f4bfa4e
925914f
 
 
51a3e6d
925914f
15531e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925914f
15531e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bbec8
 
f4bfa4e
15531e3
d8bbec8
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d129378
 
 
b68ab8a
d129378
b68ab8a
d129378
32efa22
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32efa22
b68ab8a
d129378
b68ab8a
d129378
 
 
 
 
 
 
b68ab8a
d129378
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
d129378
 
 
b68ab8a
 
 
 
 
 
 
 
d129378
 
 
b68ab8a
 
d129378
b68ab8a
d129378
b68ab8a
 
d129378
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
32efa22
b68ab8a
 
 
 
 
 
 
 
32efa22
d129378
 
 
32efa22
 
 
 
 
 
 
d129378
 
d0c1a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32efa22
d0c1a11
32efa22
d0c1a11
 
32efa22
d0c1a11
32efa22
 
 
 
d0c1a11
32efa22
d0c1a11
32efa22
d0c1a11
 
32efa22
 
 
 
 
 
 
 
 
 
d0c1a11
32efa22
 
 
 
d0c1a11
 
3d0bb33
d0c1a11
 
 
 
3d0bb33
d0c1a11
 
 
 
 
 
 
32efa22
d0c1a11
 
 
32efa22
d0c1a11
32efa22
 
d0c1a11
32efa22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c1a11
 
 
 
 
 
 
 
 
 
32efa22
 
d0c1a11
32efa22
 
 
 
d0c1a11
32efa22
 
 
 
 
 
 
 
d0c1a11
 
32efa22
 
d0c1a11
32efa22
 
d0c1a11
32efa22
 
 
 
d0c1a11
32efa22
 
d0c1a11
32efa22
d0c1a11
32efa22
 
 
 
 
 
 
 
 
 
 
 
 
d0c1a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d0bb33
d0c1a11
 
3d0bb33
32efa22
 
3d0bb33
32efa22
 
 
3d0bb33
32efa22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d0bb33
 
 
d0c1a11
 
 
 
 
 
 
32efa22
 
d0c1a11
 
 
 
32efa22
d0c1a11
 
 
 
 
32efa22
d0c1a11
 
 
 
 
32efa22
d0c1a11
 
 
 
 
32efa22
d0c1a11
32efa22
 
 
d0c1a11
32efa22
d0c1a11
32efa22
 
 
 
 
 
 
 
 
 
 
 
d0c1a11
32efa22
 
 
 
d0c1a11
32efa22
 
 
 
 
 
 
 
 
 
 
 
 
d0c1a11
 
 
 
 
 
3d0bb33
c315193
 
 
 
d129378
 
32efa22
d8bbec8
4348906
 
32efa22
 
b4c56a0
2290df0
c315193
51a3e6d
32efa22
51a3e6d
 
 
 
 
 
e609162
 
51a3e6d
 
6db2c97
 
 
 
 
e609162
6db2c97
e609162
 
 
4348906
 
6db2c97
e609162
51a3e6d
 
 
 
 
ccdd80f
51a3e6d
 
ccdd80f
51a3e6d
 
32efa22
 
51a3e6d
 
 
 
ccdd80f
51a3e6d
32efa22
 
925914f
e609162
c315193
e609162
 
 
 
 
 
 
 
 
 
 
 
 
f832c8e
c315193
 
 
 
 
 
32efa22
c315193
 
 
 
 
e609162
32efa22
e838605
e609162
e838605
e609162
 
 
 
 
 
 
 
 
 
 
 
 
f832c8e
e838605
 
 
 
 
 
32efa22
e838605
 
 
 
c315193
32efa22
 
 
 
 
0e1ad49
32efa22
51a3e6d
0e1ad49
 
 
c315193
32efa22
 
 
 
 
 
aa2fa0a
 
 
 
 
 
 
 
d8bbec8
32efa22
 
d129378
32efa22
d8bbec8
32efa22
 
d8bbec8
 
 
d129378
 
32efa22
d0c1a11
d129378
32efa22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c1a11
 
 
 
 
 
 
 
 
51a3e6d
d0c1a11
32efa22
 
 
 
 
925914f
 
 
 
51a3e6d
d0c1a11
925914f
15531e3
 
 
 
 
d0c1a11
15531e3
 
32efa22
d0c1a11
 
 
f4bfa4e
b68ab8a
 
 
d8bbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
32efa22
 
 
 
 
d8bbec8
32efa22
b68ab8a
 
d0c1a11
 
 
 
 
 
 
 
 
b68ab8a
d8bbec8
32efa22
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bbec8
32efa22
 
 
 
 
d8bbec8
b68ab8a
 
 
 
 
 
 
 
32efa22
 
 
 
 
 
b68ab8a
 
 
32efa22
 
 
 
 
d8bbec8
 
32efa22
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
32efa22
 
 
 
f4bfa4e
32efa22
 
 
d0c1a11
 
 
 
 
d129378
32efa22
 
 
 
 
 
 
 
 
 
 
b68ab8a
32efa22
 
 
b68ab8a
d0c1a11
32efa22
 
d0c1a11
 
 
 
 
 
 
32efa22
 
 
 
 
d0c1a11
 
 
32efa22
d0c1a11
32efa22
d0c1a11
 
 
 
 
 
 
 
 
 
32efa22
 
 
 
 
 
 
 
d0c1a11
 
 
 
32efa22
 
 
 
d0c1a11
32efa22
d0c1a11
 
32efa22
d0c1a11
32efa22
d0c1a11
 
32efa22
d0c1a11
32efa22
 
 
 
 
 
 
 
 
b3176eb
32efa22
 
 
 
d8bbec8
 
32efa22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bbec8
32efa22
 
 
 
 
e609162
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
import streamlit as st
from huggingface_hub import HfApi
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
import time
import requests
from collections import Counter
import numpy as np

st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")

# ν–₯μƒλœ UI μŠ€νƒ€μΌλ§
st.markdown("""
<style>
    /* μ‚¬μ΄λ“œλ°” μŠ€νƒ€μΌλ§ */
    [data-testid="stSidebar"] {
        min-width: 35vw !important;
        max-width: 35vw !important;
        background-color: #f8f9fa;
        padding: 1rem;
        border-right: 1px solid #e9ecef;
    }
    
    /* 헀더 μŠ€νƒ€μΌλ§ */
    h1, h2, h3 {
        color: #1e88e5;
        font-weight: 700;
    }
    h1 {
        font-size: 2.5rem;
        margin-bottom: 1.5rem;
        border-bottom: 2px solid #e0e0e0;
        padding-bottom: 0.5rem;
    }
    h2 {
        font-size: 1.8rem;
        margin-top: 1.5rem;
    }
    h3 {
        font-size: 1.4rem;
        margin-top: 1rem;
    }
    
    /* μΉ΄λ“œ μŠ€νƒ€μΌλ§ */
    div[data-testid="stMetric"] {
        background-color: #f1f8fe;
        border-radius: 10px;
        padding: 1rem;
        box-shadow: 0 2px 5px rgba(0,0,0,0.05);
        margin-bottom: 1rem;
    }
    
    /* 차트 μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌλ§ */
    .chart-container {
        background-color: white;
        border-radius: 10px;
        padding: 1rem;
        box-shadow: 0 2px 10px rgba(0,0,0,0.1);
        margin: 1rem 0;
    }
    
    /* ν…Œμ΄λΈ” μŠ€νƒ€μΌλ§ */
    div[data-testid="stDataFrame"] {
        background-color: white;
        border-radius: 10px;
        padding: 0.5rem;
        box-shadow: 0 2px 5px rgba(0,0,0,0.05);
    }
    
    /* νƒ­ μŠ€νƒ€μΌλ§ */
    button[data-baseweb="tab"] {
        font-weight: 600;
    }
    
    /* μ„œλΈŒν—€λ” λ°°κ²½ */
    .subheader {
        background-color: #f1f8fe;
        padding: 0.5rem 1rem;
        border-radius: 5px;
        margin-bottom: 1rem;
    }
    
    /* 정보 뱃지 */
    .info-badge {
        background-color: #e3f2fd;
        color: #1976d2;
        padding: 0.3rem 0.7rem;
        border-radius: 20px;
        display: inline-block;
        font-weight: 500;
        margin-right: 0.5rem;
    }
    
    /* ν”„λ‘œκ·Έλ ˆμŠ€ λ°” */
    div[data-testid="stProgress"] {
        height: 0.5rem !important;
    }
    
    /* λ²„νŠΌ μŠ€νƒ€μΌλ§ */
    .stButton button {
        background-color: #1e88e5;
        color: white;
        border: none;
        font-weight: 500;
    }
    
    /* κ²½κ³ /성곡 λ©”μ‹œμ§€ κ°œμ„  */
    div[data-testid="stAlert"] {
        border-radius: 10px;
        margin: 1rem 0;
    }
    
    /* μΉ΄ν…Œκ³ λ¦¬ 뢄석 μ„Ήμ…˜ */
    .category-section {
        background-color: white;
        border-radius: 10px;
        padding: 1rem;
        margin-bottom: 1.5rem;
        box-shadow: 0 2px 5px rgba(0,0,0,0.05);
    }
</style>
""", unsafe_allow_html=True)

api = HfApi()

# Cache for API responses
@lru_cache(maxsize=1000)
def cached_repo_info(repo_id, repo_type):
    return api.repo_info(repo_id=repo_id, repo_type=repo_type)

@lru_cache(maxsize=1000)
def cached_list_commits(repo_id, repo_type):
    return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))

@lru_cache(maxsize=100)
def cached_list_items(username, kind):
    if kind == "model":
        return list(api.list_models(author=username))
    elif kind == "dataset":
        return list(api.list_datasets(author=username))
    elif kind == "space":
        return list(api.list_spaces(author=username))
    return []

# Function to fetch trending accounts and create stats
@lru_cache(maxsize=1)
def get_trending_accounts(limit=100):
    try:
        trending_data = {"spaces": [], "models": []}
        
        # Get spaces for stats calculation
        spaces_response = requests.get("https://huggingface.co/api/spaces", 
                                      params={"limit": 10000}, 
                                      timeout=30)
        
        # Get models for stats calculation
        models_response = requests.get("https://huggingface.co/api/models", 
                                      params={"limit": 10000}, 
                                      timeout=30)
        
        # Process spaces data
        spaces_owners = []
        if spaces_response.status_code == 200:
            spaces = spaces_response.json()
            
            # Count spaces by owner
            owner_counts_spaces = {}
            for space in spaces:
                if '/' in space.get('id', ''):
                    owner, _ = space.get('id', '').split('/', 1)
                else:
                    owner = space.get('owner', '')
                
                if owner != 'None':
                    owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1
            
            # Get top owners by count for spaces
            top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit]
            trending_data["spaces"] = top_owners_spaces
            spaces_owners = [owner for owner, _ in top_owners_spaces]
        
        # Process models data
        models_owners = []
        if models_response.status_code == 200:
            models = models_response.json()
            
            # Count models by owner
            owner_counts_models = {}
            for model in models:
                if '/' in model.get('id', ''):
                    owner, _ = model.get('id', '').split('/', 1)
                else:
                    owner = model.get('owner', '')
                
                if owner != 'None':
                    owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1
            
            # Get top owners by count for models
            top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit]
            trending_data["models"] = top_owners_models
            models_owners = [owner for owner, _ in top_owners_models]
        
        # Combine rankings for overall trending based on appearance in both lists
        combined_score = {}
        for i, owner in enumerate(spaces_owners):
            if owner not in combined_score:
                combined_score[owner] = 0
            combined_score[owner] += (limit - i)  # Higher rank gives more points
            
        for i, owner in enumerate(models_owners):
            if owner not in combined_score:
                combined_score[owner] = 0
            combined_score[owner] += (limit - i)  # Higher rank gives more points
        
        # Sort by combined score
        sorted_combined = sorted(combined_score.items(), key=lambda x: x[1], reverse=True)[:limit]
        trending_authors = [owner for owner, _ in sorted_combined]
        
        return trending_authors, trending_data["spaces"], trending_data["models"]
    except Exception as e:
        st.error(f"Error fetching trending accounts: {str(e)}")
        fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
        return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]

# Rate limiting
class RateLimiter:
    def __init__(self, calls_per_second=10):
        self.calls_per_second = calls_per_second
        self.last_call = 0

    def wait(self):
        current_time = time.time()
        time_since_last_call = current_time - self.last_call
        if time_since_last_call < (1.0 / self.calls_per_second):
            time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
        self.last_call = time.time()

rate_limiter = RateLimiter()

# Function to fetch commits for a repository (optimized)
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
    try:
        rate_limiter.wait()
        # Skip private/gated repos upfront
        repo_info = cached_repo_info(repo_id, repo_type)
        if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
            return [], 0

        # Get initial commit date
        initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
        commit_dates = []
        commit_count = 0

        # Add initial commit if it's from the selected year
        if initial_commit_date.year == selected_year:
            commit_dates.append(initial_commit_date)
            commit_count += 1

        # Get all commits
        commits = cached_list_commits(repo_id, repo_type)
        for commit in commits:
            commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
            if commit_date.year == selected_year:
                commit_dates.append(commit_date)
                commit_count += 1

        return commit_dates, commit_count
    except Exception as e:
        return [], 0

# Function to get commit events for a user (optimized)
def get_commit_events(username, kind=None, selected_year=None):
    commit_dates = []
    items_with_type = []
    kinds = [kind] if kind else ["model", "dataset", "space"]

    for k in kinds:
        try:
            items = cached_list_items(username, k)
            items_with_type.extend((item, k) for item in items)
            repo_ids = [item.id for item in items]

            # Optimized parallel fetch with chunking
            chunk_size = 5  # Process 5 repos at a time
            for i in range(0, len(repo_ids), chunk_size):
                chunk = repo_ids[i:i + chunk_size]
                with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
                    future_to_repo = {
                        executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
                        for repo_id in chunk
                    }
                    for future in as_completed(future_to_repo):
                        repo_commits, repo_count = future.result()
                        if repo_commits:  # Only extend if we got commits
                            commit_dates.extend(repo_commits)
        except Exception as e:
            st.warning(f"Error fetching {k}s for {username}: {str(e)}")

    # Create DataFrame with all commits
    df = pd.DataFrame(commit_dates, columns=["date"])
    if not df.empty:
        df = df.drop_duplicates()  # Remove any duplicate dates
    return df, items_with_type

# Calendar heatmap function (optimized)
def make_calendar_heatmap(df, title, year):
    if df.empty:
        st.info(f"No {title.lower()} found for {year}.")
        return

    # Optimize DataFrame operations
    df["count"] = 1
    df = df.groupby("date", as_index=False).sum()
    df["date"] = pd.to_datetime(df["date"])

    # Create date range more efficiently
    start = pd.Timestamp(f"{year}-01-01")
    end = pd.Timestamp(f"{year}-12-31")
    all_days = pd.date_range(start=start, end=end)

    # Optimize DataFrame creation and merging
    heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
    heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
    heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
    heatmap_data = heatmap_data.drop("count_y", axis=1)

    # Calculate week and day of week more efficiently
    heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
    heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7

    # Create pivot table more efficiently
    pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)

    # Optimize month labels calculation
    month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
    month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)

    # Create custom colormap with specific boundaries
    from matplotlib.colors import ListedColormap, BoundaryNorm
    colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39']  # GitHub-style green colors
    bounds = [0, 1, 3, 11, 31, float('inf')]  # Boundaries for color transitions
    cmap = ListedColormap(colors)
    norm = BoundaryNorm(bounds, cmap.N)

    # Create plot more efficiently
    fig, ax = plt.subplots(figsize=(12, 1.5))

    # Convert pivot values to integers to ensure proper color mapping
    pivot_int = pivot.astype(int)

    # Create heatmap with explicit vmin and vmax
    sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
                square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])

    ax.set_title(f"{title}", fontsize=14, pad=10)
    ax.set_xlabel("")
    ax.set_ylabel("")
    ax.set_xticks(month_positions)
    ax.set_xticklabels(month_labels, fontsize=10)
    ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=10)
    
    # μ‹œκ°μ  ν–₯상을 μœ„ν•œ figure μŠ€νƒ€μΌλ§
    fig.tight_layout()
    fig.patch.set_facecolor('#F8F9FA')
    
    st.pyplot(fig)

# Function to create a fancy contribution radar chart
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
    # Create radar chart for contribution metrics
    categories = ['Models', 'Spaces', 'Datasets', 'Activity']
    values = [models_count, spaces_count, datasets_count, commits_count]
    
    # Normalize values for better visualization
    max_vals = [100, 100, 50, 500]  # Reasonable max values for each category
    normalized = [min(v/m, 1.0) for v, m in zip(values, max_vals)]
    
    # Create radar chart
    angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
    angles += angles[:1]  # Close the loop
    
    normalized += normalized[:1]  # Close the loop
    
    fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True}, facecolor='#F8F9FA')
    
    # Add background grid with improved styling
    ax.set_theta_offset(np.pi / 2)
    ax.set_theta_direction(-1)
    ax.set_thetagrids(np.degrees(angles[:-1]), categories, fontsize=12, fontweight='bold')
    
    # κ·Έλ¦¬λ“œ μŠ€νƒ€μΌλ§ κ°œμ„ 
    ax.grid(color='#CCCCCC', linestyle='-', linewidth=0.5, alpha=0.7)
    
    # Draw the chart with improved color scheme
    ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
    ax.plot(angles, normalized, color='#4CAF50', linewidth=3)
    
    # Add value labels with improved styling
    for i, val in enumerate(values):
        angle = angles[i]
        x = (normalized[i] + 0.1) * np.cos(angle)
        y = (normalized[i] + 0.1) * np.sin(angle)
        ax.text(angle, normalized[i] + 0.1, str(val), 
                ha='center', va='center', fontsize=12, 
                fontweight='bold', color='#1976D2')
    
    # Add highlight circles
    circles = [0.25, 0.5, 0.75, 1.0]
    for circle in circles:
        ax.plot(angles, [circle] * len(angles), color='gray', alpha=0.3, linewidth=0.5, linestyle='--')
    
    ax.set_title(f"{username}'s Contribution Profile", fontsize=16, pad=20, fontweight='bold')
    
    # λ°°κ²½ 원 μ—†μ• κΈ°
    ax.set_facecolor('#F8F9FA')
    
    return fig

# Function to create contribution distribution pie chart
def create_contribution_pie(model_commits, dataset_commits, space_commits):
    labels = ['Models', 'Datasets', 'Spaces']
    sizes = [model_commits, dataset_commits, space_commits]
    
    # Filter out zero values
    filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
    filtered_sizes = [size for size in sizes if size > 0]
    
    if not filtered_sizes:
        return None  # No data to show
    
    # Use a more attractive color scheme
    colors = ['#FF9800', '#2196F3', '#4CAF50']
    filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
    
    fig, ax = plt.subplots(figsize=(7, 7), facecolor='#F8F9FA')
    
    # Create exploded pie chart with improved styling
    explode = [0.1] * len(filtered_sizes)  # Explode all slices for better visualization
    
    wedges, texts, autotexts = ax.pie(
        filtered_sizes, 
        labels=None,  # We'll add custom labels
        colors=filtered_colors,
        autopct='%1.1f%%', 
        startangle=90, 
        shadow=True, 
        explode=explode,
        textprops={'fontsize': 14, 'weight': 'bold'},
        wedgeprops={'edgecolor': 'white', 'linewidth': 2}
    )
    
    # Customize the percentage text
    for autotext in autotexts:
        autotext.set_color('white')
        autotext.set_fontsize(12)
        autotext.set_weight('bold')
    
    # Add legend with custom styling
    ax.legend(
        wedges, 
        [f"{label} ({size})" for label, size in zip(filtered_labels, filtered_sizes)],
        title="Contribution Types",
        loc="center left",
        bbox_to_anchor=(0.85, 0.5),
        fontsize=12
    )
    
    ax.set_title('Distribution of Contributions by Type', fontsize=16, pad=20, fontweight='bold')
    ax.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle
    
    return fig

# Function to create monthly activity chart
def create_monthly_activity(df, year):
    if df.empty:
        return None
    
    # Aggregate by month
    df['date'] = pd.to_datetime(df['date'])
    df['month'] = df['date'].dt.month
    df['month_name'] = df['date'].dt.strftime('%b')
    
    # Count by month and ensure all months are present
    month_order = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
    counts_by_month = df.groupby('month_name')['date'].count()
    monthly_counts = pd.Series([counts_by_month.get(m, 0) for m in month_order], index=month_order)
    
    # Create bar chart with improved styling
    fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
    
    # Create bars with gradient colors based on activity level
    norm = plt.Normalize(0, monthly_counts.max() if monthly_counts.max() > 0 else 1)
    colors = plt.cm.viridis(norm(monthly_counts.values))
    
    bars = ax.bar(monthly_counts.index, monthly_counts.values, color=colors, width=0.7)
    
    # Highlight the month with most activity
    if monthly_counts.max() > 0:
        max_idx = monthly_counts.argmax()
        bars[max_idx].set_color('#FF5722')
        bars[max_idx].set_edgecolor('black')
        bars[max_idx].set_linewidth(1.5)
    
    # Add labels and styling with enhanced design
    ax.set_title(f'Monthly Activity in {year}', fontsize=18, pad=20, fontweight='bold')
    ax.set_xlabel('Month', fontsize=14, labelpad=10)
    ax.set_ylabel('Number of Contributions', fontsize=14, labelpad=10)
    
    # Add value labels on top of bars with improved styling
    for i, count in enumerate(monthly_counts.values):
        if count > 0:
            ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=12, fontweight='bold')
    
    # Add grid for better readability with improved styling
    ax.grid(axis='y', linestyle='--', alpha=0.7, color='#CCCCCC')
    ax.set_axisbelow(True)  # Grid lines behind bars
    
    # Style the chart borders and background
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_linewidth(0.5)
    ax.spines['bottom'].set_linewidth(0.5)
    
    # Adjust tick parameters for better look
    ax.tick_params(axis='x', labelsize=12, pad=5)
    ax.tick_params(axis='y', labelsize=12, pad=5)
    
    plt.tight_layout()
    
    return fig

# Function to render follower growth simulation
def simulate_follower_data(username, spaces_count, models_count, total_commits):
    # Simulate follower growth based on contribution metrics
    # This is just a simulation for visual purposes
    import numpy as np
    from datetime import timedelta
    
    # Start with a base number of followers proportional to contribution metrics
    base_followers = max(10, int((spaces_count * 2 + models_count * 3 + total_commits/10) / 6))
    
    # Generate timestamps for the past year
    end_date = datetime.now()
    start_date = end_date - timedelta(days=365)
    dates = pd.date_range(start=start_date, end=end_date, freq='W')  # Weekly data points
    
    # Generate follower growth with some randomness
    followers = []
    current = base_followers / 2  # Start from half the base
    
    for i in range(len(dates)):
        growth_factor = 1 + (np.random.random() * 0.1)  # Random growth between 0% and 10%
        current = current * growth_factor
        followers.append(int(current))
    
    # Ensure end value matches our base_followers estimate
    followers[-1] = base_followers
    
    # Create the chart with improved styling
    fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
    
    # Create gradient line for better visualization
    points = np.array([dates, followers]).T.reshape(-1, 1, 2)
    segments = np.concatenate([points[:-1], points[1:]], axis=1)
    
    from matplotlib.collections import LineCollection
    norm = plt.Normalize(0, len(segments))
    lc = LineCollection(segments, cmap='viridis', norm=norm, linewidth=3, alpha=0.8)
    lc.set_array(np.arange(len(segments)))
    line = ax.add_collection(lc)
    
    # Add markers
    ax.scatter(dates, followers, s=50, color='#9C27B0', alpha=0.8, zorder=10)
    
    # Add styling with enhanced design
    ax.set_title(f"Estimated Follower Growth for {username}", fontsize=18, pad=20, fontweight='bold')
    ax.set_xlabel("Date", fontsize=14, labelpad=10)
    ax.set_ylabel("Followers", fontsize=14, labelpad=10)
    
    # Format the axes limits
    ax.set_xlim(dates.min(), dates.max())
    ax.set_ylim(0, max(followers) * 1.1)
    
    # Add grid for better readability with improved styling
    ax.grid(True, linestyle='--', alpha=0.7, color='#CCCCCC')
    ax.set_axisbelow(True)  # Grid lines behind plot
    
    # Style the chart borders and background
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_linewidth(0.5)
    ax.spines['bottom'].set_linewidth(0.5)
    
    # Adjust tick parameters for better look
    ax.tick_params(axis='x', labelsize=12, rotation=45)
    ax.tick_params(axis='y', labelsize=12)
    
    # Add annotations for start and end points
    ax.annotate(f"Start: {followers[0]}", 
                xy=(dates[0], followers[0]),
                xytext=(10, 10),
                textcoords='offset points',
                fontsize=12,
                fontweight='bold',
                color='#9C27B0',
                bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
    
    ax.annotate(f"Current: {followers[-1]}", 
                xy=(dates[-1], followers[-1]),
                xytext=(-10, 10),
                textcoords='offset points',
                fontsize=12,
                fontweight='bold',
                color='#9C27B0',
                ha='right',
                bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
    
    plt.tight_layout()
    
    return fig

# Function to create ranking position visualization
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
    if not (overall_rank or spaces_rank or models_rank):
        return None
    
    # Create a horizontal bar chart for rankings with improved styling
    fig, ax = plt.subplots(figsize=(12, 5), facecolor='#F8F9FA')
    
    categories = []
    positions = []
    colors = []
    rank_values = []
    
    if overall_rank:
        categories.append('Overall')
        positions.append(101 - overall_rank)  # Invert rank for visualization (higher is better)
        colors.append('#673AB7')
        rank_values.append(overall_rank)
    
    if spaces_rank:
        categories.append('Spaces')
        positions.append(101 - spaces_rank)
        colors.append('#2196F3')
        rank_values.append(spaces_rank)
    
    if models_rank:
        categories.append('Models')
        positions.append(101 - models_rank)
        colors.append('#FF9800')
        rank_values.append(models_rank)
    
    # Create horizontal bars with enhanced styling
    bars = ax.barh(categories, positions, color=colors, alpha=0.8, height=0.6, 
                  edgecolor='white', linewidth=1.5)
    
    # Add rank values as text with improved styling
    for i, bar in enumerate(bars):
        ax.text(bar.get_width() + 2, bar.get_y() + bar.get_height()/2, 
                f'Rank #{rank_values[i]}', va='center', fontsize=12, 
                fontweight='bold', color=colors[i])
    
    # Set chart properties with enhanced styling
    ax.set_xlim(0, 105)
    ax.set_title(f"Ranking Positions for {username} (Top 100)", fontsize=18, pad=20, fontweight='bold')
    ax.set_xlabel("Percentile (higher is better)", fontsize=14, labelpad=10)
    
    # Add explanatory text
    ax.text(50, -0.6, "← Lower rank (higher number) | Higher rank (lower number) β†’", 
            ha='center', va='center', fontsize=10, fontweight='bold', color='#666666')
    
    # Add a vertical line at 90th percentile to highlight top 10 with improved styling
    ax.axvline(x=90, color='#FF5252', linestyle='--', alpha=0.7, linewidth=2)
    ax.text(92, len(categories)/2, 'Top 10', color='#D32F2F', fontsize=12, 
           rotation=90, va='center', fontweight='bold')
    
    # Style the chart borders and background
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['left'].set_linewidth(0.5)
    ax.spines['bottom'].set_linewidth(0.5)
    
    # Adjust tick parameters for better look
    ax.tick_params(axis='x', labelsize=12)
    ax.tick_params(axis='y', labelsize=14, pad=5)
    
    # Add grid for better readability
    ax.grid(axis='x', linestyle='--', alpha=0.5, color='#CCCCCC')
    ax.set_axisbelow(True)  # Grid lines behind bars
    
    # Invert x-axis to show ranking position more intuitively
    ax.invert_xaxis()
    
    plt.tight_layout()
    return fig

# Fetch trending accounts with a loading spinner (do this once at the beginning)
with st.spinner("Loading trending accounts..."):
    trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)

# Sidebar
with st.sidebar:
    st.markdown('<h1 style="text-align: center; color: #1E88E5;">πŸ‘€ Contributor</h1>', unsafe_allow_html=True)
    
    # Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
    tab1, tab2 = st.tabs([
        "Top 100 Overall", 
        "Top Spaces & Models"
    ])
    
    with tab1:
        # Show combined trending accounts list
        st.markdown('<div class="subheader"><h3>πŸ”₯ Top 100 Contributors</h3></div>', unsafe_allow_html=True)
        
        # Create a data frame for the table
        if trending_accounts:
            # Create a mapping from username to Spaces and Models rankings
            spaces_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_spaces)}
            models_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_models)}
            
            # Create the overall ranking dataframe with trophies for top 3
            overall_data = []
            for idx, username in enumerate(trending_accounts[:100]):
                # Add trophy emojis for top 3
                rank_display = ""
                if idx == 0:
                    rank_display = "πŸ† "  # Gold trophy for 1st place
                elif idx == 1:
                    rank_display = "πŸ† "  # Silver trophy for 2nd place
                elif idx == 2:
                    rank_display = "πŸ† "  # Bronze trophy for 3rd place
                
                # Use strings for all rankings to avoid type conversion issues
                spaces_position = str(spaces_rank.get(username, "-"))
                models_position = str(models_rank.get(username, "-"))
                overall_data.append([f"{rank_display}{username}", spaces_position, models_position])
            
            ranking_data_overall = pd.DataFrame(
                overall_data, 
                columns=["Contributor", "Spaces Rank", "Models Rank"]
            )
            ranking_data_overall.index = ranking_data_overall.index + 1  # Start index from 1 for ranking

            st.dataframe(
                ranking_data_overall,
                height=900,  # μ•½ 30ν–‰ 정도 보이도둝 ν”½μ…€ λ‹¨μœ„ 높이 μ„€μ • (ν•„μš”μ— 따라 μ‘°μ • κ°€λŠ₯)
                column_config={
                    "Contributor": st.column_config.TextColumn("Contributor"),
                    "Spaces Rank": st.column_config.TextColumn("Spaces Rank"),
                    "Models Rank": st.column_config.TextColumn("Models Rank")
                },
                use_container_width=True,
                hide_index=False
            )

    with tab2:
        # Show trending accounts by Spaces & Models
        st.markdown('<div class="subheader"><h3>πŸš€ Spaces Leaders</h3></div>', unsafe_allow_html=True)
        
        # Create a data frame for the Spaces table with medals for top 3
        if top_owners_spaces:
            spaces_data = []
            for idx, (owner, count) in enumerate(top_owners_spaces[:50]):
                # Add medal emojis for top 3
                rank_display = ""
                if idx == 0:
                    rank_display = "πŸ₯‡ "  # Gold medal for 1st place
                elif idx == 1:
                    rank_display = "πŸ₯ˆ "  # Silver medal for 2nd place
                elif idx == 2:
                    rank_display = "πŸ₯‰ "  # Bronze medal for 3rd place
                
                spaces_data.append([f"{rank_display}{owner}", count])
            
            ranking_data_spaces = pd.DataFrame(spaces_data, columns=["Contributor", "Spaces Count(Top 500 positions)"])
            ranking_data_spaces.index = ranking_data_spaces.index + 1  # Start index from 1 for ranking
            
            st.dataframe(
                ranking_data_spaces,
                column_config={
                    "Contributor": st.column_config.TextColumn("Contributor"),
                    "Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d")
                },
                use_container_width=True,
                hide_index=False
            )
        
        # Display the top Models accounts list with medals for top 3
        st.markdown('<div class="subheader"><h3>🧠 Models Leaders</h3></div>', unsafe_allow_html=True)
        
        # Create a data frame for the Models table with medals for top 3
        if top_owners_models:
            models_data = []
            for idx, (owner, count) in enumerate(top_owners_models[:50]):
                # Add medal emojis for top 3
                rank_display = ""
                if idx == 0:
                    rank_display = "πŸ₯‡ "  # Gold medal for 1st place
                elif idx == 1:
                    rank_display = "πŸ₯ˆ "  # Silver medal for 2nd place
                elif idx == 2:
                    rank_display = "πŸ₯‰ "  # Bronze medal for 3rd place
                
                models_data.append([f"{rank_display}{owner}", count])
            
            ranking_data_models = pd.DataFrame(models_data, columns=["Contributor", "Models Count(Top 500 positions)"])
            ranking_data_models.index = ranking_data_models.index + 1  # Start index from 1 for ranking
            
            st.dataframe(
                ranking_data_models,
                column_config={
                    "Contributor": st.column_config.TextColumn("Contributor"),
                    "Models Count": st.column_config.NumberColumn("Models Count", format="%d")
                },
                use_container_width=True,
                hide_index=False
            )
    
    # Add visual divider
    st.markdown('<hr style="margin: 2rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
    
    # Display contributor selection with enhanced styling
    st.markdown('<div class="subheader"><h3>Select Contributor</h3></div>', unsafe_allow_html=True)
    selected_trending = st.selectbox(
        "Choose from trending accounts",
        options=trending_accounts[:100],  # Limit to top 100
        index=0 if trending_accounts else None,
        key="trending_selectbox"
    )
    
    # Custom account input option with enhanced styling
    st.markdown('<div style="text-align: center; margin: 15px 0; font-weight: bold;">- OR -</div>', unsafe_allow_html=True)
    custom = st.text_input("Enter a username/organization:", placeholder="e.g. facebook, google...")
    
    # Add visual divider
    st.markdown('<hr style="margin: 1.5rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
    
    # Set username based on selection or custom input
    if custom.strip():
        username = custom.strip()
    elif selected_trending:
        username = selected_trending
    else:
        username = "facebook"  # Default fallback
    
    # Year selection with enhanced styling
    st.markdown('<div class="subheader"><h3>πŸ—“οΈ Time Period</h3></div>', unsafe_allow_html=True)
    year_options = list(range(datetime.now().year, 2017, -1))
    selected_year = st.selectbox("Select Year:", options=year_options)
    
    # Additional options for customization with enhanced styling
    st.markdown('<div class="subheader"><h3>βš™οΈ Display Options</h3></div>', unsafe_allow_html=True)
    show_models = st.checkbox("Show Models", value=True)
    show_datasets = st.checkbox("Show Datasets", value=True)
    show_spaces = st.checkbox("Show Spaces", value=True)

# Main Content
st.markdown(f'<h1 style="text-align: center; color: #1E88E5; margin-bottom: 2rem;">πŸ€— Hugging Face Contributions</h1>', unsafe_allow_html=True)

if username:
    # Create a header card with contributor info
    header_col1, header_col2 = st.columns([1, 2])
    with header_col1:
        st.markdown(f'<div style="background-color: #E3F2FD; padding: 20px; border-radius: 10px; border-left: 5px solid #1E88E5;">'
                  f'<h2 style="color: #1E88E5;">πŸ‘€ {username}</h2>'
                  f'<p style="font-size: 16px;">Analyzing contributions for {selected_year}</p>'
                  f'<p><a href="https://huggingface.co/{username}" target="_blank" style="color: #1E88E5; font-weight: bold;">View Profile</a></p>'
                  f'</div>', unsafe_allow_html=True)
    
    with header_col2:
        # Add explanation about the app
        st.markdown(f'<div style="background-color: #F3E5F5; padding: 20px; border-radius: 10px; border-left: 5px solid #9C27B0;">'
                  f'<h3 style="color: #9C27B0;">About This Analysis</h3>'
                  f'<p>This dashboard analyzes {username}\'s contributions to Hugging Face in {selected_year}, including models, datasets, and spaces.</p>'
                  f'<p style="font-style: italic; font-size: 12px;">* Some metrics like follower growth are simulated for visualization purposes.</p>'
                  f'</div>', unsafe_allow_html=True)

    with st.spinner(f"Fetching contribution data for {username}..."):
        # Initialize variables for tracking
        overall_rank = None
        spaces_rank = None
        models_rank = None
        spaces_count = 0
        models_count = 0
        datasets_count = 0
        
        # Display contributor rank if in top 100
        if username in trending_accounts[:100]:
            overall_rank = trending_accounts.index(username) + 1
            
            # Create a prominent ranking display
            st.markdown(f'<div style="background-color: #FFF8E1; padding: 20px; border-radius: 10px; border-left: 5px solid #FFC107; margin: 1rem 0;">'
                      f'<h2 style="color: #FFA000; text-align: center;">πŸ† Ranked #{overall_rank} in Top Contributors</h2>'
                      f'</div>', unsafe_allow_html=True)
            
            # Find user in spaces ranking
            for i, (owner, count) in enumerate(top_owners_spaces):
                if owner == username:
                    spaces_rank = i+1
                    spaces_count = count
                    break
            
            # Find user in models ranking
            for i, (owner, count) in enumerate(top_owners_models):
                if owner == username:
                    models_rank = i+1
                    models_count = count
                    break
                    
            # Display ranking visualization
            rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
            if rank_chart:
                st.pyplot(rank_chart)
        
        # Create a dictionary to store commits by type
        commits_by_type = {}
        commit_counts_by_type = {}
        
        # Determine which types to fetch based on checkboxes
        types_to_fetch = []
        if show_models:
            types_to_fetch.append("model")
        if show_datasets:
            types_to_fetch.append("dataset")
        if show_spaces:
            types_to_fetch.append("space")
        
        if not types_to_fetch:
            st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
            st.stop()

        # Create a progress container
        progress_container = st.container()
        progress_container.markdown('<h3 style="color: #1E88E5;">Fetching Repository Data...</h3>', unsafe_allow_html=True)
        progress_bar = progress_container.progress(0)

        # Fetch commits for each selected type
        for type_index, kind in enumerate(types_to_fetch):
            try:
                items = cached_list_items(username, kind)
                
                # Update counts for radar chart
                if kind == "model":
                    models_count = len(items)
                elif kind == "dataset":
                    datasets_count = len(items)
                elif kind == "space":
                    spaces_count = len(items)
                    
                repo_ids = [item.id for item in items]
                
                progress_container.info(f"Found {len(repo_ids)} {kind}s for {username}")

                # Process repos in chunks
                chunk_size = 5
                total_commits = 0
                all_commit_dates = []

                for i in range(0, len(repo_ids), chunk_size):
                    chunk = repo_ids[i:i + chunk_size]
                    with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
                        future_to_repo = {
                            executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
                            for repo_id in chunk
                        }
                        for future in as_completed(future_to_repo):
                            repo_commits, repo_count = future.result()
                            if repo_commits:
                                all_commit_dates.extend(repo_commits)
                                total_commits += repo_count
                    
                    # Update progress for all types
                    progress_per_type = 1.0 / len(types_to_fetch)
                    current_type_progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
                    overall_progress = (type_index * progress_per_type) + (current_type_progress * progress_per_type)
                    progress_bar.progress(overall_progress)
                
                commits_by_type[kind] = all_commit_dates
                commit_counts_by_type[kind] = total_commits

            except Exception as e:
                st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
                commits_by_type[kind] = []
                commit_counts_by_type[kind] = 0

        # Complete progress
        progress_bar.progress(1.0)
        progress_container.success("Data fetching complete!")
        time.sleep(0.5)  # Short pause for visual feedback
        progress_container.empty()  # Clear the progress indicators

        # Calculate total commits across all types
        total_commits = sum(commit_counts_by_type.values())

        # Main dashboard layout with improved structure
        st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Activity Overview</h2>', unsafe_allow_html=True)
        
        # Profile summary
        profile_col1, profile_col2 = st.columns([1, 2])
        
        with profile_col1:
            # Create a stats card with key metrics
            st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
                      f'<h3 style="color: #1E88E5; text-align: center; margin-bottom: 15px;">Contribution Stats</h3>'
                      f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
                      f'<span style="font-weight: bold;">Total Commits:</span><span>{total_commits}</span></div>'
                      f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
                      f'<span style="font-weight: bold;">Models:</span><span>{models_count}</span></div>'
                      f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
                      f'<span style="font-weight: bold;">Datasets:</span><span>{datasets_count}</span></div>'
                      f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
                      f'<span style="font-weight: bold;">Spaces:</span><span>{spaces_count}</span></div>'
                      f'</div>', unsafe_allow_html=True)
            
            # Type breakdown pie chart
            model_commits = commit_counts_by_type.get("model", 0)
            dataset_commits = commit_counts_by_type.get("dataset", 0)
            space_commits = commit_counts_by_type.get("space", 0)
            
            pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
            if pie_chart:
                st.pyplot(pie_chart)
        
        with profile_col2:
            # Display contribution radar chart
            radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
            st.pyplot(radar_fig)

            # Create DataFrame for all commits
            all_commits = []
            for commits in commits_by_type.values():
                all_commits.extend(commits)
            all_df = pd.DataFrame(all_commits, columns=["date"])
            if not all_df.empty:
                all_df = all_df.drop_duplicates()  # Remove any duplicate dates

        # Calendar heatmap for all commits in a separate section
        st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Contribution Calendar</h2>', unsafe_allow_html=True)
        
        if not all_df.empty:
            make_calendar_heatmap(all_df, "All Contributions", selected_year)
        else:
            st.info(f"No contributions found for {username} in {selected_year}")

        # Monthly activity chart
        st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Monthly Activity</h2>', unsafe_allow_html=True)
        
        monthly_fig = create_monthly_activity(all_df, selected_year)
        if monthly_fig:
            st.pyplot(monthly_fig)
        else:
            st.info(f"No activity data available for {username} in {selected_year}")
        
        # Follower growth simulation
        st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Growth Projection</h2>', unsafe_allow_html=True)
        st.markdown('<div style="background-color: #EDE7F6; padding: 10px; border-radius: 5px; margin-bottom: 15px;">'
                  '<p style="font-style: italic; margin: 0;">πŸ“Š This is a simulation based on contribution metrics - for visualization purposes only</p>'
                  '</div>', unsafe_allow_html=True)
        
        follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
        st.pyplot(follower_chart)
        
        # Analytics summary section
        if total_commits > 0:
            st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">πŸ“Š Analytics Summary</h2>', unsafe_allow_html=True)
            
            # Contribution pattern analysis
            monthly_df = pd.DataFrame(all_commits, columns=["date"])
            monthly_df['date'] = pd.to_datetime(monthly_df['date'])
            monthly_df['month'] = monthly_df['date'].dt.month
            
            if not monthly_df.empty:
                most_active_month = monthly_df['month'].value_counts().idxmax()
                month_name = datetime(2020, most_active_month, 1).strftime('%B')
                
                # Create a summary card
                st.markdown(f'<div style="background-color: white; padding: 25px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
                          f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Activity Analysis for {username}</h3>'
                          f'<ul style="list-style-type: none; padding-left: 5px;">'
                          f'<li style="margin: 15px 0; font-size: 16px;">πŸ“ˆ <strong>Total Activity:</strong> {total_commits} contributions in {selected_year}</li>'
                          f'<li style="margin: 15px 0; font-size: 16px;">πŸ—“οΈ <strong>Most Active Month:</strong> {month_name} with {monthly_df["month"].value_counts().max()} contributions</li>'
                          f'<li style="margin: 15px 0; font-size: 16px;">🧩 <strong>Repository Breakdown:</strong> {models_count} Models, {spaces_count} Spaces, {datasets_count} Datasets</li>'
                          f'</ul>', unsafe_allow_html=True)
                
                # Add ranking context if available
                if overall_rank:
                    percentile = 100 - overall_rank
                    st.markdown(f'<div style="margin-top: 20px;">'
                              f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Ranking Analysis</h3>'
                              f'<ul style="list-style-type: none; padding-left: 5px;">'
                              f'<li style="margin: 15px 0; font-size: 16px;">πŸ† <strong>Overall Ranking:</strong> #{overall_rank} (Top {percentile}% of contributors)</li>', unsafe_allow_html=True)
                    
                    badge_html = '<div style="margin: 20px 0;">'
                    
                    if spaces_rank and spaces_rank <= 10:
                        badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">🌟 Elite Spaces Contributor (#{spaces_rank})</span>'
                    elif spaces_rank and spaces_rank <= 30:
                        badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">✨ Outstanding Spaces Contributor (#{spaces_rank})</span>'
                    
                    if models_rank and models_rank <= 10:
                        badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">🌟 Elite Models Contributor (#{models_rank})</span>'
                    elif models_rank and models_rank <= 30:
                        badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">✨ Outstanding Models Contributor (#{models_rank})</span>'
                    
                    badge_html += '</div>'
                    
                    # Add achievement badges
                    if spaces_rank or models_rank:
                        st.markdown(badge_html, unsafe_allow_html=True)
                    
                    st.markdown('</ul></div></div>', unsafe_allow_html=True)
        
        # Detailed category analysis section
        st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Detailed Category Analysis</h2>', unsafe_allow_html=True)
        
        # Create category cards in columns
        cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
        
        category_icons = {
            "model": "🧠",
            "dataset": "πŸ“¦",
            "space": "πŸš€"
        }
        
        category_colors = {
            "model": "#FF9800",
            "dataset": "#2196F3",
            "space": "#4CAF50"
        }
        
        for i, kind in enumerate(types_to_fetch):
            with cols[i]:
                try:
                    emoji = category_icons.get(kind, "πŸ“Š")
                    label = kind.capitalize() + "s"
                    color = category_colors.get(kind, "#1E88E5")
                    
                    total = len(cached_list_items(username, kind))
                    commits = commits_by_type.get(kind, [])
                    commit_count = commit_counts_by_type.get(kind, 0)
                    
                    # Create styled card header
                    st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid {color};">'
                              f'<h3 style="color: {color}; text-align: center;">{emoji} {label}</h3>'
                              f'<div style="display: flex; justify-content: space-between; margin: 15px 0;">'
                              f'<span style="font-weight: bold;">Total:</span><span>{total}</span></div>'
                              f'<div style="display: flex; justify-content: space-between; margin-bottom: 15px;">'
                              f'<span style="font-weight: bold;">Commits:</span><span>{commit_count}</span></div>'
                              f'</div>', unsafe_allow_html=True)
                    
                    # Create calendar for this type
                    df_kind = pd.DataFrame(commits, columns=["date"])
                    if not df_kind.empty:
                        df_kind = df_kind.drop_duplicates()  # Remove any duplicate dates
                        make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
                    else:
                        st.info(f"No {label.lower()} activity in {selected_year}")
                        
                except Exception as e:
                    st.warning(f"Error processing {kind.capitalize()}s: {str(e)}")
                    # Show empty placeholder
                    st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid #9E9E9E; text-align: center;">'
                              f'<h3 style="color: #9E9E9E;">⚠️ Error</h3>'
                              f'<p>Could not load {kind.capitalize()}s data</p>'
                              f'</div>', unsafe_allow_html=True)
        
        # Footer
        st.markdown('<hr style="margin: 3rem 0 1rem 0;">', unsafe_allow_html=True)
        st.markdown('<p style="text-align: center; color: #9E9E9E; font-size: 0.8rem;">Hugging Face Contributions Dashboard | Data fetched from Hugging Face API</p>', unsafe_allow_html=True)
else:
    # If no username is selected, show welcome screen
    st.markdown(f'<div style="text-align: center; margin: 50px 0;">'
              f'<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="width: 200px; margin-bottom: 30px;">'
              f'<h2>Welcome to Hugging Face Contributions Dashboard</h2>'
              f'<p style="font-size: 1.2rem;">Please select a contributor from the sidebar to view their activity.</p>'
              f'</div>', unsafe_allow_html=True)