File size: 52,516 Bytes
d129378 b68ab8a f4bfa4e 32efa22 d129378 b4c56a0 32efa22 b4c56a0 32efa22 b4c56a0 32efa22 b4c56a0 d129378 32efa22 b68ab8a f4bfa4e d8bbec8 15531e3 925914f f4bfa4e d8bbec8 15531e3 925914f 51a3e6d f4bfa4e 925914f f4bfa4e 925914f f4bfa4e 925914f 51a3e6d 925914f 15531e3 925914f 15531e3 d8bbec8 f4bfa4e 15531e3 d8bbec8 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 32efa22 b68ab8a 32efa22 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a 32efa22 b68ab8a 32efa22 d129378 32efa22 d129378 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 3d0bb33 d0c1a11 3d0bb33 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 3d0bb33 d0c1a11 3d0bb33 32efa22 3d0bb33 32efa22 3d0bb33 32efa22 3d0bb33 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 3d0bb33 c315193 d129378 32efa22 d8bbec8 4348906 32efa22 b4c56a0 2290df0 c315193 51a3e6d 32efa22 51a3e6d e609162 51a3e6d 6db2c97 e609162 6db2c97 e609162 4348906 6db2c97 e609162 51a3e6d ccdd80f 51a3e6d ccdd80f 51a3e6d 32efa22 51a3e6d ccdd80f 51a3e6d 32efa22 925914f e609162 c315193 e609162 f832c8e c315193 32efa22 c315193 e609162 32efa22 e838605 e609162 e838605 e609162 f832c8e e838605 32efa22 e838605 c315193 32efa22 0e1ad49 32efa22 51a3e6d 0e1ad49 c315193 32efa22 aa2fa0a d8bbec8 32efa22 d129378 32efa22 d8bbec8 32efa22 d8bbec8 d129378 32efa22 d0c1a11 d129378 32efa22 d0c1a11 51a3e6d d0c1a11 32efa22 925914f 51a3e6d d0c1a11 925914f 15531e3 d0c1a11 15531e3 32efa22 d0c1a11 f4bfa4e b68ab8a d8bbec8 32efa22 d8bbec8 32efa22 b68ab8a d0c1a11 b68ab8a d8bbec8 32efa22 b68ab8a d8bbec8 32efa22 d8bbec8 b68ab8a 32efa22 b68ab8a 32efa22 d8bbec8 32efa22 f4bfa4e 32efa22 f4bfa4e 32efa22 d0c1a11 d129378 32efa22 b68ab8a 32efa22 b68ab8a d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 d0c1a11 32efa22 b3176eb 32efa22 d8bbec8 32efa22 d8bbec8 32efa22 e609162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 |
import streamlit as st
from huggingface_hub import HfApi
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
import time
import requests
from collections import Counter
import numpy as np
st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")
# ν₯μλ UI μ€νμΌλ§
st.markdown("""
<style>
/* μ¬μ΄λλ° μ€νμΌλ§ */
[data-testid="stSidebar"] {
min-width: 35vw !important;
max-width: 35vw !important;
background-color: #f8f9fa;
padding: 1rem;
border-right: 1px solid #e9ecef;
}
/* ν€λ μ€νμΌλ§ */
h1, h2, h3 {
color: #1e88e5;
font-weight: 700;
}
h1 {
font-size: 2.5rem;
margin-bottom: 1.5rem;
border-bottom: 2px solid #e0e0e0;
padding-bottom: 0.5rem;
}
h2 {
font-size: 1.8rem;
margin-top: 1.5rem;
}
h3 {
font-size: 1.4rem;
margin-top: 1rem;
}
/* μΉ΄λ μ€νμΌλ§ */
div[data-testid="stMetric"] {
background-color: #f1f8fe;
border-radius: 10px;
padding: 1rem;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
margin-bottom: 1rem;
}
/* μ°¨νΈ μ»¨ν
μ΄λ μ€νμΌλ§ */
.chart-container {
background-color: white;
border-radius: 10px;
padding: 1rem;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
margin: 1rem 0;
}
/* ν
μ΄λΈ μ€νμΌλ§ */
div[data-testid="stDataFrame"] {
background-color: white;
border-radius: 10px;
padding: 0.5rem;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
}
/* ν μ€νμΌλ§ */
button[data-baseweb="tab"] {
font-weight: 600;
}
/* μλΈν€λ λ°°κ²½ */
.subheader {
background-color: #f1f8fe;
padding: 0.5rem 1rem;
border-radius: 5px;
margin-bottom: 1rem;
}
/* μ 보 λ±μ§ */
.info-badge {
background-color: #e3f2fd;
color: #1976d2;
padding: 0.3rem 0.7rem;
border-radius: 20px;
display: inline-block;
font-weight: 500;
margin-right: 0.5rem;
}
/* νλ‘κ·Έλ μ€ λ° */
div[data-testid="stProgress"] {
height: 0.5rem !important;
}
/* λ²νΌ μ€νμΌλ§ */
.stButton button {
background-color: #1e88e5;
color: white;
border: none;
font-weight: 500;
}
/* κ²½κ³ /μ±κ³΅ λ©μμ§ κ°μ */
div[data-testid="stAlert"] {
border-radius: 10px;
margin: 1rem 0;
}
/* μΉ΄ν
κ³ λ¦¬ λΆμ μΉμ
*/
.category-section {
background-color: white;
border-radius: 10px;
padding: 1rem;
margin-bottom: 1.5rem;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
}
</style>
""", unsafe_allow_html=True)
api = HfApi()
# Cache for API responses
@lru_cache(maxsize=1000)
def cached_repo_info(repo_id, repo_type):
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
@lru_cache(maxsize=1000)
def cached_list_commits(repo_id, repo_type):
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
@lru_cache(maxsize=100)
def cached_list_items(username, kind):
if kind == "model":
return list(api.list_models(author=username))
elif kind == "dataset":
return list(api.list_datasets(author=username))
elif kind == "space":
return list(api.list_spaces(author=username))
return []
# Function to fetch trending accounts and create stats
@lru_cache(maxsize=1)
def get_trending_accounts(limit=100):
try:
trending_data = {"spaces": [], "models": []}
# Get spaces for stats calculation
spaces_response = requests.get("https://huggingface.co/api/spaces",
params={"limit": 10000},
timeout=30)
# Get models for stats calculation
models_response = requests.get("https://huggingface.co/api/models",
params={"limit": 10000},
timeout=30)
# Process spaces data
spaces_owners = []
if spaces_response.status_code == 200:
spaces = spaces_response.json()
# Count spaces by owner
owner_counts_spaces = {}
for space in spaces:
if '/' in space.get('id', ''):
owner, _ = space.get('id', '').split('/', 1)
else:
owner = space.get('owner', '')
if owner != 'None':
owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1
# Get top owners by count for spaces
top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit]
trending_data["spaces"] = top_owners_spaces
spaces_owners = [owner for owner, _ in top_owners_spaces]
# Process models data
models_owners = []
if models_response.status_code == 200:
models = models_response.json()
# Count models by owner
owner_counts_models = {}
for model in models:
if '/' in model.get('id', ''):
owner, _ = model.get('id', '').split('/', 1)
else:
owner = model.get('owner', '')
if owner != 'None':
owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1
# Get top owners by count for models
top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit]
trending_data["models"] = top_owners_models
models_owners = [owner for owner, _ in top_owners_models]
# Combine rankings for overall trending based on appearance in both lists
combined_score = {}
for i, owner in enumerate(spaces_owners):
if owner not in combined_score:
combined_score[owner] = 0
combined_score[owner] += (limit - i) # Higher rank gives more points
for i, owner in enumerate(models_owners):
if owner not in combined_score:
combined_score[owner] = 0
combined_score[owner] += (limit - i) # Higher rank gives more points
# Sort by combined score
sorted_combined = sorted(combined_score.items(), key=lambda x: x[1], reverse=True)[:limit]
trending_authors = [owner for owner, _ in sorted_combined]
return trending_authors, trending_data["spaces"], trending_data["models"]
except Exception as e:
st.error(f"Error fetching trending accounts: {str(e)}")
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
# Rate limiting
class RateLimiter:
def __init__(self, calls_per_second=10):
self.calls_per_second = calls_per_second
self.last_call = 0
def wait(self):
current_time = time.time()
time_since_last_call = current_time - self.last_call
if time_since_last_call < (1.0 / self.calls_per_second):
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
self.last_call = time.time()
rate_limiter = RateLimiter()
# Function to fetch commits for a repository (optimized)
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
try:
rate_limiter.wait()
# Skip private/gated repos upfront
repo_info = cached_repo_info(repo_id, repo_type)
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
return [], 0
# Get initial commit date
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
commit_dates = []
commit_count = 0
# Add initial commit if it's from the selected year
if initial_commit_date.year == selected_year:
commit_dates.append(initial_commit_date)
commit_count += 1
# Get all commits
commits = cached_list_commits(repo_id, repo_type)
for commit in commits:
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
if commit_date.year == selected_year:
commit_dates.append(commit_date)
commit_count += 1
return commit_dates, commit_count
except Exception as e:
return [], 0
# Function to get commit events for a user (optimized)
def get_commit_events(username, kind=None, selected_year=None):
commit_dates = []
items_with_type = []
kinds = [kind] if kind else ["model", "dataset", "space"]
for k in kinds:
try:
items = cached_list_items(username, k)
items_with_type.extend((item, k) for item in items)
repo_ids = [item.id for item in items]
# Optimized parallel fetch with chunking
chunk_size = 5 # Process 5 repos at a time
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits: # Only extend if we got commits
commit_dates.extend(repo_commits)
except Exception as e:
st.warning(f"Error fetching {k}s for {username}: {str(e)}")
# Create DataFrame with all commits
df = pd.DataFrame(commit_dates, columns=["date"])
if not df.empty:
df = df.drop_duplicates() # Remove any duplicate dates
return df, items_with_type
# Calendar heatmap function (optimized)
def make_calendar_heatmap(df, title, year):
if df.empty:
st.info(f"No {title.lower()} found for {year}.")
return
# Optimize DataFrame operations
df["count"] = 1
df = df.groupby("date", as_index=False).sum()
df["date"] = pd.to_datetime(df["date"])
# Create date range more efficiently
start = pd.Timestamp(f"{year}-01-01")
end = pd.Timestamp(f"{year}-12-31")
all_days = pd.date_range(start=start, end=end)
# Optimize DataFrame creation and merging
heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
heatmap_data = heatmap_data.drop("count_y", axis=1)
# Calculate week and day of week more efficiently
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7
# Create pivot table more efficiently
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)
# Optimize month labels calculation
month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)
# Create custom colormap with specific boundaries
from matplotlib.colors import ListedColormap, BoundaryNorm
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] # GitHub-style green colors
bounds = [0, 1, 3, 11, 31, float('inf')] # Boundaries for color transitions
cmap = ListedColormap(colors)
norm = BoundaryNorm(bounds, cmap.N)
# Create plot more efficiently
fig, ax = plt.subplots(figsize=(12, 1.5))
# Convert pivot values to integers to ensure proper color mapping
pivot_int = pivot.astype(int)
# Create heatmap with explicit vmin and vmax
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
ax.set_title(f"{title}", fontsize=14, pad=10)
ax.set_xlabel("")
ax.set_ylabel("")
ax.set_xticks(month_positions)
ax.set_xticklabels(month_labels, fontsize=10)
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=10)
# μκ°μ ν₯μμ μν figure μ€νμΌλ§
fig.tight_layout()
fig.patch.set_facecolor('#F8F9FA')
st.pyplot(fig)
# Function to create a fancy contribution radar chart
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
# Create radar chart for contribution metrics
categories = ['Models', 'Spaces', 'Datasets', 'Activity']
values = [models_count, spaces_count, datasets_count, commits_count]
# Normalize values for better visualization
max_vals = [100, 100, 50, 500] # Reasonable max values for each category
normalized = [min(v/m, 1.0) for v, m in zip(values, max_vals)]
# Create radar chart
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
angles += angles[:1] # Close the loop
normalized += normalized[:1] # Close the loop
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True}, facecolor='#F8F9FA')
# Add background grid with improved styling
ax.set_theta_offset(np.pi / 2)
ax.set_theta_direction(-1)
ax.set_thetagrids(np.degrees(angles[:-1]), categories, fontsize=12, fontweight='bold')
# 그리λ μ€νμΌλ§ κ°μ
ax.grid(color='#CCCCCC', linestyle='-', linewidth=0.5, alpha=0.7)
# Draw the chart with improved color scheme
ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
ax.plot(angles, normalized, color='#4CAF50', linewidth=3)
# Add value labels with improved styling
for i, val in enumerate(values):
angle = angles[i]
x = (normalized[i] + 0.1) * np.cos(angle)
y = (normalized[i] + 0.1) * np.sin(angle)
ax.text(angle, normalized[i] + 0.1, str(val),
ha='center', va='center', fontsize=12,
fontweight='bold', color='#1976D2')
# Add highlight circles
circles = [0.25, 0.5, 0.75, 1.0]
for circle in circles:
ax.plot(angles, [circle] * len(angles), color='gray', alpha=0.3, linewidth=0.5, linestyle='--')
ax.set_title(f"{username}'s Contribution Profile", fontsize=16, pad=20, fontweight='bold')
# λ°°κ²½ μ μμ κΈ°
ax.set_facecolor('#F8F9FA')
return fig
# Function to create contribution distribution pie chart
def create_contribution_pie(model_commits, dataset_commits, space_commits):
labels = ['Models', 'Datasets', 'Spaces']
sizes = [model_commits, dataset_commits, space_commits]
# Filter out zero values
filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
filtered_sizes = [size for size in sizes if size > 0]
if not filtered_sizes:
return None # No data to show
# Use a more attractive color scheme
colors = ['#FF9800', '#2196F3', '#4CAF50']
filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
fig, ax = plt.subplots(figsize=(7, 7), facecolor='#F8F9FA')
# Create exploded pie chart with improved styling
explode = [0.1] * len(filtered_sizes) # Explode all slices for better visualization
wedges, texts, autotexts = ax.pie(
filtered_sizes,
labels=None, # We'll add custom labels
colors=filtered_colors,
autopct='%1.1f%%',
startangle=90,
shadow=True,
explode=explode,
textprops={'fontsize': 14, 'weight': 'bold'},
wedgeprops={'edgecolor': 'white', 'linewidth': 2}
)
# Customize the percentage text
for autotext in autotexts:
autotext.set_color('white')
autotext.set_fontsize(12)
autotext.set_weight('bold')
# Add legend with custom styling
ax.legend(
wedges,
[f"{label} ({size})" for label, size in zip(filtered_labels, filtered_sizes)],
title="Contribution Types",
loc="center left",
bbox_to_anchor=(0.85, 0.5),
fontsize=12
)
ax.set_title('Distribution of Contributions by Type', fontsize=16, pad=20, fontweight='bold')
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
return fig
# Function to create monthly activity chart
def create_monthly_activity(df, year):
if df.empty:
return None
# Aggregate by month
df['date'] = pd.to_datetime(df['date'])
df['month'] = df['date'].dt.month
df['month_name'] = df['date'].dt.strftime('%b')
# Count by month and ensure all months are present
month_order = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
counts_by_month = df.groupby('month_name')['date'].count()
monthly_counts = pd.Series([counts_by_month.get(m, 0) for m in month_order], index=month_order)
# Create bar chart with improved styling
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
# Create bars with gradient colors based on activity level
norm = plt.Normalize(0, monthly_counts.max() if monthly_counts.max() > 0 else 1)
colors = plt.cm.viridis(norm(monthly_counts.values))
bars = ax.bar(monthly_counts.index, monthly_counts.values, color=colors, width=0.7)
# Highlight the month with most activity
if monthly_counts.max() > 0:
max_idx = monthly_counts.argmax()
bars[max_idx].set_color('#FF5722')
bars[max_idx].set_edgecolor('black')
bars[max_idx].set_linewidth(1.5)
# Add labels and styling with enhanced design
ax.set_title(f'Monthly Activity in {year}', fontsize=18, pad=20, fontweight='bold')
ax.set_xlabel('Month', fontsize=14, labelpad=10)
ax.set_ylabel('Number of Contributions', fontsize=14, labelpad=10)
# Add value labels on top of bars with improved styling
for i, count in enumerate(monthly_counts.values):
if count > 0:
ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=12, fontweight='bold')
# Add grid for better readability with improved styling
ax.grid(axis='y', linestyle='--', alpha=0.7, color='#CCCCCC')
ax.set_axisbelow(True) # Grid lines behind bars
# Style the chart borders and background
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_linewidth(0.5)
ax.spines['bottom'].set_linewidth(0.5)
# Adjust tick parameters for better look
ax.tick_params(axis='x', labelsize=12, pad=5)
ax.tick_params(axis='y', labelsize=12, pad=5)
plt.tight_layout()
return fig
# Function to render follower growth simulation
def simulate_follower_data(username, spaces_count, models_count, total_commits):
# Simulate follower growth based on contribution metrics
# This is just a simulation for visual purposes
import numpy as np
from datetime import timedelta
# Start with a base number of followers proportional to contribution metrics
base_followers = max(10, int((spaces_count * 2 + models_count * 3 + total_commits/10) / 6))
# Generate timestamps for the past year
end_date = datetime.now()
start_date = end_date - timedelta(days=365)
dates = pd.date_range(start=start_date, end=end_date, freq='W') # Weekly data points
# Generate follower growth with some randomness
followers = []
current = base_followers / 2 # Start from half the base
for i in range(len(dates)):
growth_factor = 1 + (np.random.random() * 0.1) # Random growth between 0% and 10%
current = current * growth_factor
followers.append(int(current))
# Ensure end value matches our base_followers estimate
followers[-1] = base_followers
# Create the chart with improved styling
fig, ax = plt.subplots(figsize=(14, 6), facecolor='#F8F9FA')
# Create gradient line for better visualization
points = np.array([dates, followers]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
from matplotlib.collections import LineCollection
norm = plt.Normalize(0, len(segments))
lc = LineCollection(segments, cmap='viridis', norm=norm, linewidth=3, alpha=0.8)
lc.set_array(np.arange(len(segments)))
line = ax.add_collection(lc)
# Add markers
ax.scatter(dates, followers, s=50, color='#9C27B0', alpha=0.8, zorder=10)
# Add styling with enhanced design
ax.set_title(f"Estimated Follower Growth for {username}", fontsize=18, pad=20, fontweight='bold')
ax.set_xlabel("Date", fontsize=14, labelpad=10)
ax.set_ylabel("Followers", fontsize=14, labelpad=10)
# Format the axes limits
ax.set_xlim(dates.min(), dates.max())
ax.set_ylim(0, max(followers) * 1.1)
# Add grid for better readability with improved styling
ax.grid(True, linestyle='--', alpha=0.7, color='#CCCCCC')
ax.set_axisbelow(True) # Grid lines behind plot
# Style the chart borders and background
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_linewidth(0.5)
ax.spines['bottom'].set_linewidth(0.5)
# Adjust tick parameters for better look
ax.tick_params(axis='x', labelsize=12, rotation=45)
ax.tick_params(axis='y', labelsize=12)
# Add annotations for start and end points
ax.annotate(f"Start: {followers[0]}",
xy=(dates[0], followers[0]),
xytext=(10, 10),
textcoords='offset points',
fontsize=12,
fontweight='bold',
color='#9C27B0',
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
ax.annotate(f"Current: {followers[-1]}",
xy=(dates[-1], followers[-1]),
xytext=(-10, 10),
textcoords='offset points',
fontsize=12,
fontweight='bold',
color='#9C27B0',
ha='right',
bbox=dict(boxstyle="round,pad=0.3", fc="#F3E5F5", ec="#9C27B0", alpha=0.8))
plt.tight_layout()
return fig
# Function to create ranking position visualization
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
if not (overall_rank or spaces_rank or models_rank):
return None
# Create a horizontal bar chart for rankings with improved styling
fig, ax = plt.subplots(figsize=(12, 5), facecolor='#F8F9FA')
categories = []
positions = []
colors = []
rank_values = []
if overall_rank:
categories.append('Overall')
positions.append(101 - overall_rank) # Invert rank for visualization (higher is better)
colors.append('#673AB7')
rank_values.append(overall_rank)
if spaces_rank:
categories.append('Spaces')
positions.append(101 - spaces_rank)
colors.append('#2196F3')
rank_values.append(spaces_rank)
if models_rank:
categories.append('Models')
positions.append(101 - models_rank)
colors.append('#FF9800')
rank_values.append(models_rank)
# Create horizontal bars with enhanced styling
bars = ax.barh(categories, positions, color=colors, alpha=0.8, height=0.6,
edgecolor='white', linewidth=1.5)
# Add rank values as text with improved styling
for i, bar in enumerate(bars):
ax.text(bar.get_width() + 2, bar.get_y() + bar.get_height()/2,
f'Rank #{rank_values[i]}', va='center', fontsize=12,
fontweight='bold', color=colors[i])
# Set chart properties with enhanced styling
ax.set_xlim(0, 105)
ax.set_title(f"Ranking Positions for {username} (Top 100)", fontsize=18, pad=20, fontweight='bold')
ax.set_xlabel("Percentile (higher is better)", fontsize=14, labelpad=10)
# Add explanatory text
ax.text(50, -0.6, "β Lower rank (higher number) | Higher rank (lower number) β",
ha='center', va='center', fontsize=10, fontweight='bold', color='#666666')
# Add a vertical line at 90th percentile to highlight top 10 with improved styling
ax.axvline(x=90, color='#FF5252', linestyle='--', alpha=0.7, linewidth=2)
ax.text(92, len(categories)/2, 'Top 10', color='#D32F2F', fontsize=12,
rotation=90, va='center', fontweight='bold')
# Style the chart borders and background
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_linewidth(0.5)
ax.spines['bottom'].set_linewidth(0.5)
# Adjust tick parameters for better look
ax.tick_params(axis='x', labelsize=12)
ax.tick_params(axis='y', labelsize=14, pad=5)
# Add grid for better readability
ax.grid(axis='x', linestyle='--', alpha=0.5, color='#CCCCCC')
ax.set_axisbelow(True) # Grid lines behind bars
# Invert x-axis to show ranking position more intuitively
ax.invert_xaxis()
plt.tight_layout()
return fig
# Fetch trending accounts with a loading spinner (do this once at the beginning)
with st.spinner("Loading trending accounts..."):
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
# Sidebar
with st.sidebar:
st.markdown('<h1 style="text-align: center; color: #1E88E5;">π€ Contributor</h1>', unsafe_allow_html=True)
# Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
tab1, tab2 = st.tabs([
"Top 100 Overall",
"Top Spaces & Models"
])
with tab1:
# Show combined trending accounts list
st.markdown('<div class="subheader"><h3>π₯ Top 100 Contributors</h3></div>', unsafe_allow_html=True)
# Create a data frame for the table
if trending_accounts:
# Create a mapping from username to Spaces and Models rankings
spaces_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_spaces)}
models_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_models)}
# Create the overall ranking dataframe with trophies for top 3
overall_data = []
for idx, username in enumerate(trending_accounts[:100]):
# Add trophy emojis for top 3
rank_display = ""
if idx == 0:
rank_display = "π " # Gold trophy for 1st place
elif idx == 1:
rank_display = "π " # Silver trophy for 2nd place
elif idx == 2:
rank_display = "π " # Bronze trophy for 3rd place
# Use strings for all rankings to avoid type conversion issues
spaces_position = str(spaces_rank.get(username, "-"))
models_position = str(models_rank.get(username, "-"))
overall_data.append([f"{rank_display}{username}", spaces_position, models_position])
ranking_data_overall = pd.DataFrame(
overall_data,
columns=["Contributor", "Spaces Rank", "Models Rank"]
)
ranking_data_overall.index = ranking_data_overall.index + 1 # Start index from 1 for ranking
st.dataframe(
ranking_data_overall,
height=900, # μ½ 30ν μ λ 보μ΄λλ‘ ν½μ
λ¨μ λμ΄ μ€μ (νμμ λ°λΌ μ‘°μ κ°λ₯)
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Spaces Rank": st.column_config.TextColumn("Spaces Rank"),
"Models Rank": st.column_config.TextColumn("Models Rank")
},
use_container_width=True,
hide_index=False
)
with tab2:
# Show trending accounts by Spaces & Models
st.markdown('<div class="subheader"><h3>π Spaces Leaders</h3></div>', unsafe_allow_html=True)
# Create a data frame for the Spaces table with medals for top 3
if top_owners_spaces:
spaces_data = []
for idx, (owner, count) in enumerate(top_owners_spaces[:50]):
# Add medal emojis for top 3
rank_display = ""
if idx == 0:
rank_display = "π₯ " # Gold medal for 1st place
elif idx == 1:
rank_display = "π₯ " # Silver medal for 2nd place
elif idx == 2:
rank_display = "π₯ " # Bronze medal for 3rd place
spaces_data.append([f"{rank_display}{owner}", count])
ranking_data_spaces = pd.DataFrame(spaces_data, columns=["Contributor", "Spaces Count(Top 500 positions)"])
ranking_data_spaces.index = ranking_data_spaces.index + 1 # Start index from 1 for ranking
st.dataframe(
ranking_data_spaces,
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d")
},
use_container_width=True,
hide_index=False
)
# Display the top Models accounts list with medals for top 3
st.markdown('<div class="subheader"><h3>π§ Models Leaders</h3></div>', unsafe_allow_html=True)
# Create a data frame for the Models table with medals for top 3
if top_owners_models:
models_data = []
for idx, (owner, count) in enumerate(top_owners_models[:50]):
# Add medal emojis for top 3
rank_display = ""
if idx == 0:
rank_display = "π₯ " # Gold medal for 1st place
elif idx == 1:
rank_display = "π₯ " # Silver medal for 2nd place
elif idx == 2:
rank_display = "π₯ " # Bronze medal for 3rd place
models_data.append([f"{rank_display}{owner}", count])
ranking_data_models = pd.DataFrame(models_data, columns=["Contributor", "Models Count(Top 500 positions)"])
ranking_data_models.index = ranking_data_models.index + 1 # Start index from 1 for ranking
st.dataframe(
ranking_data_models,
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Models Count": st.column_config.NumberColumn("Models Count", format="%d")
},
use_container_width=True,
hide_index=False
)
# Add visual divider
st.markdown('<hr style="margin: 2rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
# Display contributor selection with enhanced styling
st.markdown('<div class="subheader"><h3>Select Contributor</h3></div>', unsafe_allow_html=True)
selected_trending = st.selectbox(
"Choose from trending accounts",
options=trending_accounts[:100], # Limit to top 100
index=0 if trending_accounts else None,
key="trending_selectbox"
)
# Custom account input option with enhanced styling
st.markdown('<div style="text-align: center; margin: 15px 0; font-weight: bold;">- OR -</div>', unsafe_allow_html=True)
custom = st.text_input("Enter a username/organization:", placeholder="e.g. facebook, google...")
# Add visual divider
st.markdown('<hr style="margin: 1.5rem 0; border-color: #e0e0e0;">', unsafe_allow_html=True)
# Set username based on selection or custom input
if custom.strip():
username = custom.strip()
elif selected_trending:
username = selected_trending
else:
username = "facebook" # Default fallback
# Year selection with enhanced styling
st.markdown('<div class="subheader"><h3>ποΈ Time Period</h3></div>', unsafe_allow_html=True)
year_options = list(range(datetime.now().year, 2017, -1))
selected_year = st.selectbox("Select Year:", options=year_options)
# Additional options for customization with enhanced styling
st.markdown('<div class="subheader"><h3>βοΈ Display Options</h3></div>', unsafe_allow_html=True)
show_models = st.checkbox("Show Models", value=True)
show_datasets = st.checkbox("Show Datasets", value=True)
show_spaces = st.checkbox("Show Spaces", value=True)
# Main Content
st.markdown(f'<h1 style="text-align: center; color: #1E88E5; margin-bottom: 2rem;">π€ Hugging Face Contributions</h1>', unsafe_allow_html=True)
if username:
# Create a header card with contributor info
header_col1, header_col2 = st.columns([1, 2])
with header_col1:
st.markdown(f'<div style="background-color: #E3F2FD; padding: 20px; border-radius: 10px; border-left: 5px solid #1E88E5;">'
f'<h2 style="color: #1E88E5;">π€ {username}</h2>'
f'<p style="font-size: 16px;">Analyzing contributions for {selected_year}</p>'
f'<p><a href="https://huggingface.co/{username}" target="_blank" style="color: #1E88E5; font-weight: bold;">View Profile</a></p>'
f'</div>', unsafe_allow_html=True)
with header_col2:
# Add explanation about the app
st.markdown(f'<div style="background-color: #F3E5F5; padding: 20px; border-radius: 10px; border-left: 5px solid #9C27B0;">'
f'<h3 style="color: #9C27B0;">About This Analysis</h3>'
f'<p>This dashboard analyzes {username}\'s contributions to Hugging Face in {selected_year}, including models, datasets, and spaces.</p>'
f'<p style="font-style: italic; font-size: 12px;">* Some metrics like follower growth are simulated for visualization purposes.</p>'
f'</div>', unsafe_allow_html=True)
with st.spinner(f"Fetching contribution data for {username}..."):
# Initialize variables for tracking
overall_rank = None
spaces_rank = None
models_rank = None
spaces_count = 0
models_count = 0
datasets_count = 0
# Display contributor rank if in top 100
if username in trending_accounts[:100]:
overall_rank = trending_accounts.index(username) + 1
# Create a prominent ranking display
st.markdown(f'<div style="background-color: #FFF8E1; padding: 20px; border-radius: 10px; border-left: 5px solid #FFC107; margin: 1rem 0;">'
f'<h2 style="color: #FFA000; text-align: center;">π Ranked #{overall_rank} in Top Contributors</h2>'
f'</div>', unsafe_allow_html=True)
# Find user in spaces ranking
for i, (owner, count) in enumerate(top_owners_spaces):
if owner == username:
spaces_rank = i+1
spaces_count = count
break
# Find user in models ranking
for i, (owner, count) in enumerate(top_owners_models):
if owner == username:
models_rank = i+1
models_count = count
break
# Display ranking visualization
rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
if rank_chart:
st.pyplot(rank_chart)
# Create a dictionary to store commits by type
commits_by_type = {}
commit_counts_by_type = {}
# Determine which types to fetch based on checkboxes
types_to_fetch = []
if show_models:
types_to_fetch.append("model")
if show_datasets:
types_to_fetch.append("dataset")
if show_spaces:
types_to_fetch.append("space")
if not types_to_fetch:
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
st.stop()
# Create a progress container
progress_container = st.container()
progress_container.markdown('<h3 style="color: #1E88E5;">Fetching Repository Data...</h3>', unsafe_allow_html=True)
progress_bar = progress_container.progress(0)
# Fetch commits for each selected type
for type_index, kind in enumerate(types_to_fetch):
try:
items = cached_list_items(username, kind)
# Update counts for radar chart
if kind == "model":
models_count = len(items)
elif kind == "dataset":
datasets_count = len(items)
elif kind == "space":
spaces_count = len(items)
repo_ids = [item.id for item in items]
progress_container.info(f"Found {len(repo_ids)} {kind}s for {username}")
# Process repos in chunks
chunk_size = 5
total_commits = 0
all_commit_dates = []
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits:
all_commit_dates.extend(repo_commits)
total_commits += repo_count
# Update progress for all types
progress_per_type = 1.0 / len(types_to_fetch)
current_type_progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
overall_progress = (type_index * progress_per_type) + (current_type_progress * progress_per_type)
progress_bar.progress(overall_progress)
commits_by_type[kind] = all_commit_dates
commit_counts_by_type[kind] = total_commits
except Exception as e:
st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
commits_by_type[kind] = []
commit_counts_by_type[kind] = 0
# Complete progress
progress_bar.progress(1.0)
progress_container.success("Data fetching complete!")
time.sleep(0.5) # Short pause for visual feedback
progress_container.empty() # Clear the progress indicators
# Calculate total commits across all types
total_commits = sum(commit_counts_by_type.values())
# Main dashboard layout with improved structure
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Activity Overview</h2>', unsafe_allow_html=True)
# Profile summary
profile_col1, profile_col2 = st.columns([1, 2])
with profile_col1:
# Create a stats card with key metrics
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
f'<h3 style="color: #1E88E5; text-align: center; margin-bottom: 15px;">Contribution Stats</h3>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
f'<span style="font-weight: bold;">Total Commits:</span><span>{total_commits}</span></div>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
f'<span style="font-weight: bold;">Models:</span><span>{models_count}</span></div>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
f'<span style="font-weight: bold;">Datasets:</span><span>{datasets_count}</span></div>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">'
f'<span style="font-weight: bold;">Spaces:</span><span>{spaces_count}</span></div>'
f'</div>', unsafe_allow_html=True)
# Type breakdown pie chart
model_commits = commit_counts_by_type.get("model", 0)
dataset_commits = commit_counts_by_type.get("dataset", 0)
space_commits = commit_counts_by_type.get("space", 0)
pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
if pie_chart:
st.pyplot(pie_chart)
with profile_col2:
# Display contribution radar chart
radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
st.pyplot(radar_fig)
# Create DataFrame for all commits
all_commits = []
for commits in commits_by_type.values():
all_commits.extend(commits)
all_df = pd.DataFrame(all_commits, columns=["date"])
if not all_df.empty:
all_df = all_df.drop_duplicates() # Remove any duplicate dates
# Calendar heatmap for all commits in a separate section
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Contribution Calendar</h2>', unsafe_allow_html=True)
if not all_df.empty:
make_calendar_heatmap(all_df, "All Contributions", selected_year)
else:
st.info(f"No contributions found for {username} in {selected_year}")
# Monthly activity chart
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Monthly Activity</h2>', unsafe_allow_html=True)
monthly_fig = create_monthly_activity(all_df, selected_year)
if monthly_fig:
st.pyplot(monthly_fig)
else:
st.info(f"No activity data available for {username} in {selected_year}")
# Follower growth simulation
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Growth Projection</h2>', unsafe_allow_html=True)
st.markdown('<div style="background-color: #EDE7F6; padding: 10px; border-radius: 5px; margin-bottom: 15px;">'
'<p style="font-style: italic; margin: 0;">π This is a simulation based on contribution metrics - for visualization purposes only</p>'
'</div>', unsafe_allow_html=True)
follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
st.pyplot(follower_chart)
# Analytics summary section
if total_commits > 0:
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">π Analytics Summary</h2>', unsafe_allow_html=True)
# Contribution pattern analysis
monthly_df = pd.DataFrame(all_commits, columns=["date"])
monthly_df['date'] = pd.to_datetime(monthly_df['date'])
monthly_df['month'] = monthly_df['date'].dt.month
if not monthly_df.empty:
most_active_month = monthly_df['month'].value_counts().idxmax()
month_name = datetime(2020, most_active_month, 1).strftime('%B')
# Create a summary card
st.markdown(f'<div style="background-color: white; padding: 25px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1);">'
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Activity Analysis for {username}</h3>'
f'<ul style="list-style-type: none; padding-left: 5px;">'
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Total Activity:</strong> {total_commits} contributions in {selected_year}</li>'
f'<li style="margin: 15px 0; font-size: 16px;">ποΈ <strong>Most Active Month:</strong> {month_name} with {monthly_df["month"].value_counts().max()} contributions</li>'
f'<li style="margin: 15px 0; font-size: 16px;">𧩠<strong>Repository Breakdown:</strong> {models_count} Models, {spaces_count} Spaces, {datasets_count} Datasets</li>'
f'</ul>', unsafe_allow_html=True)
# Add ranking context if available
if overall_rank:
percentile = 100 - overall_rank
st.markdown(f'<div style="margin-top: 20px;">'
f'<h3 style="color: #1E88E5; border-bottom: 1px solid #E0E0E0; padding-bottom: 10px;">Ranking Analysis</h3>'
f'<ul style="list-style-type: none; padding-left: 5px;">'
f'<li style="margin: 15px 0; font-size: 16px;">π <strong>Overall Ranking:</strong> #{overall_rank} (Top {percentile}% of contributors)</li>', unsafe_allow_html=True)
badge_html = '<div style="margin: 20px 0;">'
if spaces_rank and spaces_rank <= 10:
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Spaces Contributor (#{spaces_rank})</span>'
elif spaces_rank and spaces_rank <= 30:
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Spaces Contributor (#{spaces_rank})</span>'
if models_rank and models_rank <= 10:
badge_html += f'<span style="background-color: #FFECB3; color: #FF6F00; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">π Elite Models Contributor (#{models_rank})</span>'
elif models_rank and models_rank <= 30:
badge_html += f'<span style="background-color: #E1F5FE; color: #0277BD; padding: 8px 15px; border-radius: 20px; font-weight: bold; margin-right: 10px; display: inline-block; margin-bottom: 10px;">β¨ Outstanding Models Contributor (#{models_rank})</span>'
badge_html += '</div>'
# Add achievement badges
if spaces_rank or models_rank:
st.markdown(badge_html, unsafe_allow_html=True)
st.markdown('</ul></div></div>', unsafe_allow_html=True)
# Detailed category analysis section
st.markdown(f'<h2 style="color: #1E88E5; border-bottom: 2px solid #E0E0E0; padding-bottom: 8px; margin-top: 2rem;">Detailed Category Analysis</h2>', unsafe_allow_html=True)
# Create category cards in columns
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
category_icons = {
"model": "π§ ",
"dataset": "π¦",
"space": "π"
}
category_colors = {
"model": "#FF9800",
"dataset": "#2196F3",
"space": "#4CAF50"
}
for i, kind in enumerate(types_to_fetch):
with cols[i]:
try:
emoji = category_icons.get(kind, "π")
label = kind.capitalize() + "s"
color = category_colors.get(kind, "#1E88E5")
total = len(cached_list_items(username, kind))
commits = commits_by_type.get(kind, [])
commit_count = commit_counts_by_type.get(kind, 0)
# Create styled card header
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid {color};">'
f'<h3 style="color: {color}; text-align: center;">{emoji} {label}</h3>'
f'<div style="display: flex; justify-content: space-between; margin: 15px 0;">'
f'<span style="font-weight: bold;">Total:</span><span>{total}</span></div>'
f'<div style="display: flex; justify-content: space-between; margin-bottom: 15px;">'
f'<span style="font-weight: bold;">Commits:</span><span>{commit_count}</span></div>'
f'</div>', unsafe_allow_html=True)
# Create calendar for this type
df_kind = pd.DataFrame(commits, columns=["date"])
if not df_kind.empty:
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
else:
st.info(f"No {label.lower()} activity in {selected_year}")
except Exception as e:
st.warning(f"Error processing {kind.capitalize()}s: {str(e)}")
# Show empty placeholder
st.markdown(f'<div style="background-color: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); border-top: 5px solid #9E9E9E; text-align: center;">'
f'<h3 style="color: #9E9E9E;">β οΈ Error</h3>'
f'<p>Could not load {kind.capitalize()}s data</p>'
f'</div>', unsafe_allow_html=True)
# Footer
st.markdown('<hr style="margin: 3rem 0 1rem 0;">', unsafe_allow_html=True)
st.markdown('<p style="text-align: center; color: #9E9E9E; font-size: 0.8rem;">Hugging Face Contributions Dashboard | Data fetched from Hugging Face API</p>', unsafe_allow_html=True)
else:
# If no username is selected, show welcome screen
st.markdown(f'<div style="text-align: center; margin: 50px 0;">'
f'<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="width: 200px; margin-bottom: 30px;">'
f'<h2>Welcome to Hugging Face Contributions Dashboard</h2>'
f'<p style="font-size: 1.2rem;">Please select a contributor from the sidebar to view their activity.</p>'
f'</div>', unsafe_allow_html=True) |