File size: 2,642 Bytes
582a540 b492a07 582a540 239b2f3 582a540 f9a03ff 0e7d5d7 582a540 239b2f3 582a540 f9a03ff 8d7fa74 582a540 7de082d f9a03ff 582a540 d1c3444 d077743 f9a03ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
# Load pre-trained GPT-2 model and tokenizer
model_name = "gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_text(input_text, max_length=32, num_beams=5, do_sample=False, no_repeat_ngram_size=2):
"""
Generate text based on the given input text.
Parameters:
- input_text (str): The input text to start generation from.
- max_length (int): Maximum length of the generated text.
- num_beams (int): Number of beams for beam search.
- do_sample (bool): Whether to use sampling or not.
- no_repeat_ngram_size (int): Size of the n-gram to avoid repetition.
Returns:
- generated_text (str): The generated text.
"""
# Encode the input text and move it to the appropriate device
input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
# Generate text using the model
output = model.generate(input_ids, max_length=max_length, num_beams=num_beams,
do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size)
# Decode the generated output
generated_text = tokenizer.decode(output[0])
return generated_text
# def generate_text_with_nucleus_search(input_text, max_length=16, do_sample=True, top_p=0.9):
# """
# Generate text with nucleus sampling based on the given input text.
# Parameters:
# - input_text (str): The input text to start generation from.
# - max_length (int): Maximum length of the generated text.
# - do_sample (bool): Whether to use sampling or not.
# - top_p (float): Nucleus sampling parameter.
# Returns:
# - generated_text (str): The generated text.
# """
# # Encode the input text and move it to the appropriate device
# input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
# # Generate text using nucleus sampling
# output = model.generate(input_ids, max_length=max_length, do_sample=do_sample, top_p=top_p)
# # Decode the generated output
# generated_text = tokenizer.decode(output[0])
# return generated_text
# Create Gradio interface
input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter text for text generation...")
output_text = gr.Textbox(label="Generated Text")
gr.Interface(generate_text, input_text, output_text,
title="Text Generation with GPT-2",
description="Generate text using the GPT-2 model.",
theme="default",
allow_flagging="never").launch(share=True)
|