|
--- |
|
title: Nuera |
|
emoji: π |
|
colorFrom: blue |
|
colorTo: green |
|
sdk: gradio |
|
sdk_version: 5.19.0 |
|
app_file: app.py |
|
pinned: false |
|
--- |
|
|
|
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference |
|
# My AI Models Space |
|
|
|
This Hugging Face Space hosts TTS, SST, and LLM models with API endpoints. |
|
|
|
## Setup |
|
|
|
1. **Clone the repository** to your Hugging Face Space. |
|
2. **Install dependencies**: `pip install -r requirements.txt`. |
|
3. **Prepare models**: |
|
- **TTS**: Run `download_and_finetune_tts.py` externally, then upload `./tts_finetuned` to `models/tts_model`. If not uploaded, uses `parler-tts/parler-tts-mini-v1`. |
|
- **SST**: Run `download_and_finetune_sst.py` externally, then upload `./sst_finetuned` to `models/sst_model`. If not uploaded, uses `facebook/wav2vec2-base-960h`. |
|
- **LLM**: Download a Llama GGUF file (e.g., from `TheBloke/Llama-2-7B-GGUF` on Hugging Face Hub) and upload to `models/llama.gguf`. Required for LLM to work. |
|
4. **Deploy**: Push to your Space, and it will run `app.py`. |
|
|
|
## API Endpoints |
|
|
|
- **POST /tts** |
|
- **Request**: `{"text": "Your text here"}` |
|
- **Response**: Audio file (WAV) |
|
- **Example**: `curl -X POST -H "Content-Type: application/json" -d '{"text":"Hello"}' http://your-space.hf.space/tts --output output.wav` |
|
|
|
- **POST /sst** |
|
- **Request**: Audio file upload |
|
- **Response**: `{"text": "transcribed text"}` |
|
- **Example**: `curl -X POST -F "[email protected]" http://your-space.hf.space/sst` |
|
|
|
- **POST /llm** |
|
- **Request**: `{"prompt": "Your prompt here"}` |
|
- **Response**: `{"text": "generated text"}` |
|
- **Example**: `curl -X POST -H "Content-Type: application/json" -d '{"prompt":"Tell me a story"}' http://your-space.hf.space/llm` |
|
|
|
## Fine-Tuning |
|
|
|
- **TTS**: Edit `download_and_finetune_tts.py` with your dataset, run externally, and upload the result. |
|
- **SST**: Edit `download_and_finetune_sst.py` with your dataset, run externally, and upload the result. |
|
- **LLM**: Llama.cpp is used for inference only. For fine-tuning, use tools like LoRA with Transformers externally, convert to GGUF, and upload. |
|
|
|
## Notes |
|
|
|
- Ensure GGUF file for LLM is manageable (e.g., quantized versions like `llama-2-7b.Q4_K_M.gguf`). |
|
- Fine-tuning requires significant resources; perform it outside Spaces. |