Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,973 Bytes
480e656 98dd4d1 e2cec11 b94a387 fe8ccea d38ca73 27d9c8d a2f3197 be1ce4f eb4dbfa a2f3197 616acbb a2f3197 fe8ccea 616acbb eb4dbfa 616acbb e2cec11 480e656 e2cec11 480e656 d568786 e2cec11 616acbb e2cec11 6067df7 480e656 e2cec11 480e656 e2cec11 85d5435 d568786 e2cec11 85d5435 e2cec11 d568786 480e656 e2cec11 6067df7 e2cec11 151e5f8 e2cec11 6067df7 480e656 aeb7259 d568786 e2cec11 aeb7259 e2cec11 d568786 480e656 e2cec11 6067df7 e2cec11 151e5f8 e2cec11 6067df7 480e656 aeb7259 d568786 e2cec11 aeb7259 e2cec11 d568786 480e656 e2cec11 6067df7 480e656 e2cec11 ad7c9e8 e2cec11 616acbb 480e656 e2cec11 616acbb 6067df7 480e656 e2cec11 d568786 480e656 e2cec11 d568786 e2cec11 480e656 e2cec11 480e656 e2cec11 480e656 e2cec11 d568786 e2cec11 d568786 480e656 d568786 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import spaces
import os
import subprocess
import tempfile
import uuid
import glob
import shutil
import time
import gradio as gr
import sys
from PIL import Image
# Set environment variables
os.environ["PIXEL3DMM_CODE_BASE"] = f"{os.getcwd()}"
os.environ["PIXEL3DMM_PREPROCESSED_DATA"] = f"{os.getcwd()}/proprocess_results"
os.environ["PIXEL3DMM_TRACKING_OUTPUT"] = f"{os.getcwd()}/tracking_results"
def sh(cmd): subprocess.check_call(cmd, shell=True)
os.system(f"pip install -e {os.getcwd()}")
from pixel3dmm import env_paths
sh("cd src/pixel3dmm/preprocessing/facer && pip install -e .")
sh("cd src/pixel3dmm/preprocessing/PIPNet/FaceBoxesV2/utils && sh make.sh")
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0"
print("==> finished installation")
install_cuda_toolkit()
import os
import torch
import numpy as np
import trimesh
from pytorch3d.io import load_obj
from pixel3dmm.tracking.renderer_nvdiffrast import NVDRenderer
from pixel3dmm.tracking.flame.FLAME import FLAME
from pixel3dmm.tracking.tracker import Tracker
from omegaconf import OmegaConf
DEVICE = "cuda"
base_conf = OmegaConf.load(f'{env_paths.CODE_BASE}/configs/tracking.yaml')
_mesh_file = env_paths.head_template
flame_model = FLAME(base_conf).to(DEVICE)
_obj_faces = load_obj(_mesh_file)[1]
diff_renderer = NVDRenderer(
image_size=base_conf.size,
obj_filename=_mesh_file,
no_sh=False,
white_bg=True
).to(DEVICE)
# Utility to select first image from a folder
def first_image_from_dir(directory):
patterns = ["*.jpg", "*.png", "*.jpeg"]
files = []
for p in patterns:
files.extend(glob.glob(os.path.join(directory, p)))
if not files:
return None
return sorted(files)[0]
# Function to reset the UI and state
def reset_all():
return (
None, # crop_img
None, # normals_img
None, # uv_img
None, # track_img
"Awaiting new image upload...", # status
{}, # state
gr.update(interactive=True), # preprocess_btn
gr.update(interactive=False), # normals_btn
gr.update(interactive=False), # uv_map_btn
gr.update(interactive=False) # track_btn
)
# Step 1: Preprocess the input image (Save and Crop)
# @spaces.GPU()
def preprocess_image(image_array, state):
if image_array is None:
return "β Please upload an image first.", None, state, gr.update(interactive=True), gr.update(interactive=False)
session_id = str(uuid.uuid4())
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
os.makedirs(base_dir, exist_ok=True)
state.update({"session_id": session_id, "base_dir": base_dir})
img = Image.fromarray(image_array)
saved_image_path = os.path.join(base_dir, f"{session_id}.png")
img.save(saved_image_path)
state["image_path"] = saved_image_path
try:
p = subprocess.run([
"python", "scripts/run_preprocessing.py", "--video_or_images_path", saved_image_path
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
shutil.rmtree(base_dir)
return err, None, {}, gr.update(interactive=True), gr.update(interactive=False)
crop_dir = os.path.join(base_dir, "cropped")
image = first_image_from_dir(crop_dir)
return "β
Step 1 complete. Ready for Normals.", image, state, gr.update(interactive=False), gr.update(interactive=True)
# Step 2: Normals inference β normals image
@spaces.GPU()
def step2_normals(state):
session_id = state.get("session_id")
if not session_id:
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
try:
p = subprocess.run([
"python", "scripts/network_inference.py", "model.prediction_type=normals", f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
image = first_image_from_dir(normals_dir)
return "β
Step 2 complete. Ready for UV Map.", image, state, gr.update(interactive=False), gr.update(interactive=True)
# Step 3: UV map inference β uv map image
@spaces.GPU()
def step3_uv_map(state):
session_id = state.get("session_id")
if not session_id:
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
try:
p = subprocess.run([
"python", "scripts/network_inference.py", "model.prediction_type=uv_map", f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
image = first_image_from_dir(uv_dir)
return "β
Step 3 complete. Ready for Tracking.", image, state, gr.update(interactive=False), gr.update(interactive=True)
# Step 4: Tracking β final tracking image
@spaces.GPU()
def step4_track(state):
session_id = state.get("session_id")
base_conf.video_name = f'{session_id}'
tracker = Tracker(base_conf, flame_model, diff_renderer)
tracker.run()
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
image = first_image_from_dir(tracking_dir)
return "β
Pipeline complete!", image, state, gr.update(interactive=False)
# Build Gradio UI
demo = gr.Blocks()
with demo:
gr.Markdown("## Image Processing Pipeline")
gr.Markdown("Upload an image, then click the buttons in order. Uploading a new image will reset the process.")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
status = gr.Textbox(label="Status", lines=2, interactive=False, value="Upload an image to start.")
state = gr.State({})
with gr.Column():
with gr.Row():
crop_img = gr.Image(label="Preprocessed", height=256)
normals_img = gr.Image(label="Normals", height=256)
with gr.Row():
uv_img = gr.Image(label="UV Map", height=256)
track_img = gr.Image(label="Tracking", height=256)
with gr.Row():
preprocess_btn = gr.Button("Step 1: Preprocess", interactive=True)
normals_btn = gr.Button("Step 2: Normals", interactive=False)
uv_map_btn = gr.Button("Step 3: UV Map", interactive=False)
track_btn = gr.Button("Step 4: Track", interactive=False)
# Define component list for reset
outputs_for_reset = [crop_img, normals_img, uv_img, track_img, status, state, preprocess_btn, normals_btn, uv_map_btn, track_btn]
# Pipeline execution logic
preprocess_btn.click(
fn=preprocess_image,
inputs=[image_in, state],
outputs=[status, crop_img, state, preprocess_btn, normals_btn]
)
normals_btn.click(
fn=step2_normals,
inputs=[state],
outputs=[status, normals_img, state, normals_btn, uv_map_btn]
)
uv_map_btn.click(
fn=step3_uv_map,
inputs=[state],
outputs=[status, uv_img, state, uv_map_btn, track_btn]
)
track_btn.click(
fn=step4_track,
inputs=[state],
outputs=[status, track_img, state, track_btn]
)
# Event to reset everything when a new image is uploaded
image_in.upload(fn=reset_all, inputs=None, outputs=outputs_for_reset)
# ------------------------------------------------------------------
# START THE GRADIO SERVER
# ------------------------------------------------------------------
demo.queue()
demo.launch(share=True, ssr_mode=False) |