pixel3dmm / app.py
alexnasa's picture
Update app.py
e2cec11 verified
raw
history blame
7.26 kB
import spaces
import os
import subprocess
import tempfile
import uuid
import glob
import shutil
import time
import gradio as gr
import sys
from PIL import Image
# Set environment variables
os.environ["PIXEL3DMM_CODE_BASE"] = f"{os.getcwd()}"
os.environ["PIXEL3DMM_PREPROCESSED_DATA"] = f"{os.getcwd()}/proprocess_results"
os.environ["PIXEL3DMM_TRACKING_OUTPUT"] = f"{os.getcwd()}/tracking_results"
def sh(cmd): subprocess.check_call(cmd, shell=True)
# only do this once per VM restart
sh("pip install -e .")
sh("cd src/pixel3dmm/preprocessing/facer && pip install -e .")
sh("cd src/pixel3dmm/preprocessing/PIPNet/FaceBoxesV2/utils && sh make.sh")
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0"
print("==> finished installation")
install_cuda_toolkit()
# Utility to select first image from a folder
def first_image_from_dir(directory):
patterns = ["*.jpg", "*.png", "*.jpeg"]
files = []
for p in patterns:
files.extend(glob.glob(os.path.join(directory, p)))
if not files:
return None
return sorted(files)[0]
# Step 1: Preprocess the input image (Save and Crop)
@spaces.GPU()
def preprocess_image(image_array, state):
# Check if an image was uploaded
if image_array is None:
return "❌ Please upload an image first.", None, state
# Step 1a: Save the uploaded image
session_id = str(uuid.uuid4())
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
os.makedirs(base_dir, exist_ok=True)
state.update({"session_id": session_id, "base_dir": base_dir})
img = Image.fromarray(image_array)
saved_image_path = os.path.join(base_dir, f"{session_id}.png")
img.save(saved_image_path)
state["image_path"] = saved_image_path
# Step 1b: Run the preprocessing script
try:
p = subprocess.run([
"python", "scripts/run_preprocessing.py",
"--video_or_images_path", saved_image_path
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"❌ Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
# Clean up created directory on failure
shutil.rmtree(base_dir)
return err, None, state
crop_dir = os.path.join(base_dir, "cropped")
image = first_image_from_dir(crop_dir)
return "βœ… Preprocessing complete", image, state
# Step 2: Normals inference β†’ normals image
@spaces.GPU()
def step2_normals(state):
session_id = state.get("session_id")
if not session_id:
return "❌ Please preprocess an image first.", None, state
try:
# Execute the network inference for normals
p = subprocess.run([
"python", "scripts/network_inference.py",
"model.prediction_type=normals", f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"❌ Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
image = first_image_from_dir(normals_dir)
return "βœ… Step 2: Normals inference complete", image, state
# Step 3: UV map inference β†’ uv map image
@spaces.GPU()
def step3_uv_map(state):
session_id = state.get("session_id")
if not session_id:
return "❌ Please preprocess an image first.", None, state
try:
# Execute the network inference for UV map
p = subprocess.run([
"python", "scripts/network_inference.py",
"model.prediction_type=uv_map", f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"❌ UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
image = first_image_from_dir(uv_dir)
return "βœ… Step 3: UV map inference complete", image, state
# Step 4: Tracking β†’ final tracking image
@spaces.GPU()
def step4_track(state):
session_id = state.get("session_id")
if not session_id:
return "❌ Please preprocess an image first.", None, state
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
try:
# Execute the tracking script
p = subprocess.run([
"python", script,
f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"❌ Tracking failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
image = first_image_from_dir(tracking_dir)
return "βœ… Step 4: Tracking complete", image, state
# Build Gradio UI
demo = gr.Blocks()
with demo:
gr.Markdown("## Image Processing Pipeline")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
status = gr.Textbox(label="Status", lines=2, interactive=False)
state = gr.State({})
with gr.Column():
with gr.Row():
crop_img = gr.Image(label="Preprocessed", height=256)
normals_img = gr.Image(label="Normals", height=256)
with gr.Row():
uv_img = gr.Image(label="UV Map", height=256)
track_img = gr.Image(label="Tracking", height=256)
with gr.Row():
preprocess_btn = gr.Button("Step 1: Preprocess")
normals_btn = gr.Button("Step 2: Normals")
uv_map_btn = gr.Button("Step 3: UV Map")
track_btn = gr.Button("Step 4: Track")
# Pipeline execution
preprocess_btn.click(fn=preprocess_image, inputs=[image_in, state], outputs=[status, crop_img, state])
normals_btn.click(fn=step2_normals, inputs=[state], outputs=[status, normals_img, state])
uv_map_btn.click(fn=step3_uv_map, inputs=[state], outputs=[status, uv_img, state])
track_btn.click(fn=step4_track, inputs=[state], outputs=[status, track_img, state])
# ------------------------------------------------------------------
# START THE GRADIO SERVER
# ------------------------------------------------------------------
demo.queue()
demo.launch(share=True, ssr_mode=False)