File size: 3,719 Bytes
05e606d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a96ff
05e606d
 
 
 
 
 
54a96ff
05e606d
 
 
 
 
 
 
 
 
 
 
 
54a96ff
05e606d
 
 
 
 
 
54a96ff
05e606d
 
 
 
 
 
 
54a96ff
e3de154
 
54a96ff
 
 
05e606d
54a96ff
 
 
05e606d
 
 
 
 
 
 
 
 
 
 
b38a0df
7d1506d
05e606d
 
 
 
b38a0df
05e606d
 
4e0c08c
 
 
 
 
c0d7d99
 
 
 
 
 
 
 
 
 
 
54a96ff
b38a0df
05e606d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import tensorflow as tf
import streamlit as st
from PIL import Image
from huggingface_hub import from_pretrained_keras
import cv2


model = from_pretrained_keras("keras-io/deeplabv3p-resnet50")

colormap = np.array([[0,0,0], [31,119,180], [44,160,44], [44, 127, 125], [52, 225, 143],
                    [217, 222, 163], [254, 128, 37], [130, 162, 128], [121, 7, 166], [136, 183, 248],
                    [85, 1, 76], [22, 23, 62], [159, 50, 15], [101, 93, 152], [252, 229, 92],
                    [167, 173, 17], [218, 252, 252], [238, 126, 197], [116, 157, 140], [214, 220, 252]], dtype=np.uint8)
                    
img_size = 512
                    
def read_image(image):
    image = tf.convert_to_tensor(image)
    image.set_shape([None, None, 3])
    image = tf.image.resize(images=image, size=[img_size, img_size])
    image = image / 127.5 - 1
    return image


def infer(model, image_tensor):
    predictions = model.predict(np.expand_dims((image_tensor), axis=0))
    predictions = np.squeeze(predictions)
    predictions = np.argmax(predictions, axis=2)
    return predictions


def decode_segmentation_masks(mask, colormap, n_classes):
    r = np.zeros_like(mask).astype(np.uint8)
    g = np.zeros_like(mask).astype(np.uint8)
    b = np.zeros_like(mask).astype(np.uint8)
    for l in range(0, n_classes):
        idx = mask == l
        r[idx] = colormap[l, 0]
        g[idx] = colormap[l, 1]
        b[idx] = colormap[l, 2]
    rgb = np.stack([r, g, b], axis=2)
    return rgb


def get_overlay(image, colored_mask):
    image = tf.keras.preprocessing.image.array_to_img(image)
    image = np.array(image).astype(np.uint8)
    overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)
    return overlay


def segmentation(input_image):
    image_tensor = read_image(input_image)
    prediction_mask = infer(image_tensor=image_tensor, model=model)
    prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20)
    overlay = get_overlay(image_tensor, prediction_colormap)
    return (overlay, prediction_colormap)


# i = gr.inputs.Image()
# o = [gr.outputs.Image('pil'), gr.outputs.Image('pil')]
st.header("Segmentacion de partes del cuerpo humano")

st.markdown("Sube una imagen o selecciona un ejemplo para segmentar las distintas partes del cuerpo humano")

file_imagen = st.file_uploader("Sube aqui tu imagen", type=["png", "jpg", "jpeg"])

examples = ["example_image_1.jpg", "example_image_2.jpg", "example_image_3.jpg"]

col1, col2, col3 = st.columns(3)
with col1:
    ex1 = Image.open(examples[0])
    st.image(ex1, width=200)
    if st.button("Corre ejemplo 1"):
        file_imagen = examples[0]

with col2:
    ex2 = Image.open(examples[1])
    st.image(ex2, width=200)
    if st.button("Corre ejemplo 2"):
        file_imagen = examples[1]

with col3:
    ex3 = Image.open(examples[2])
    st.image(ex3, width=200)
    if st.button("Corre ejemplo 3"):
        file_imagen = examples[2]

if file_imagen is not None:
    img = Image.open(file_imagen)

    output = segmentation(img)
    if output is not None:
        st.subheader("Original: ")
        st.image(img, width=850)
        col1, col2 = st.columns(2)

        with col1:
            st.subheader("Segmentacion: ")
            st.image(output[0])

        with col2:
            st.subheader("Mask: ")
            st.image(output[1])

# article = "<div style='text-align: center;'><a href='https://keras.io/examples/vision/deeplabv3_plus/' target='_blank'>Keras example by Praveen Kaushik</a></div>"
# gr.Interface(segmentation, i, o, examples=examples, allow_flagging=False, analytics_enabled=False,
#   title=title, description=description, article=article).launch(enable_queue=True)