File size: 2,695 Bytes
a4cc7b2
 
 
 
 
683afc3
c1497a6
0737dc8
a4cc7b2
 
 
 
 
 
b1029c2
97c3973
b1029c2
a4cc7b2
 
 
feede18
4fbc46c
c1497a6
683afc3
b12bc82
a4cc7b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1029c2
a4cc7b2
 
 
 
bcbf6e0
0737dc8
74c4e79
a4cc7b2
e92cda4
dbeec98
 
97c3973
a4cc7b2
97c3973
dbeec98
b1029c2
 
 
a4cc7b2
 
 
 
97c3973
a4cc7b2
683afc3
7968596
 
 
 
 
dbeec98
a4cc7b2
dbeec98
a4cc7b2
 
7968596
 
 
 
9754bfe
7968596
683afc3
7968596
a4cc7b2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
from diffusers.models import MotionAdapter
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
from diffusers.utils import export_to_gif

import gradio as gr
from huggingface_hub import login
import os
import spaces,tempfile
import torch
from diffusers import StableDiffusionXLPipeline
from PIL import Image
import torch
from diffusers import AutoPipelineForText2Image, DDIMScheduler
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torch
from diffusers.models import MotionAdapter
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
from diffusers.utils import export_to_gif

token = os.getenv("HF_TOKEN")
login(token=token)


adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16)

model_id = "stabilityai/sdxl-turbo"
scheduler = DDIMScheduler.from_pretrained(
    model_id,
    subfolder="scheduler",
    clip_sample=False,
    timestep_spacing="linspace",
    beta_schedule="linear",
    steps_offset=1,
)
pipe = AnimateDiffSDXLPipeline.from_pretrained(
    model_id,
    motion_adapter=adapter,
    scheduler=scheduler,
    torch_dtype=torch.float16,
    variant="fp16",
).to("cuda")
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")

# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
pipeline = pipe


@spaces.GPU
def generate_image(prompt, reference_image, controlnet_conditioning_scale,num_frames):
    style_images = [load_image(f.name) for f in reference_image]

    pipeline.set_ip_adapter_scale(controlnet_conditioning_scale)

    output = pipeline(
        prompt=prompt,
        ip_adapter_image=[style_images],
        negative_prompt="",
        guidance_scale=5,
        num_inference_steps=30,
        num_frames=num_frames,
    )
    frames = output.frames[0]
    export_to_gif(frames, "animation.gif")

    return "animation.gif"

# Set up Gradio interface
interface = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Textbox(label="Prompt"),
        # gr.Image( type= "filepath",label="Reference Image (Style)"),
        gr.File(type="file",file_count="multiple",label="Reference Image (Style)"),
        gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0),
        gr.Slider(label="Number of frames", minimum=0, maximum=1.0, step=0.1, value=1.0),

    ],
    outputs="image",
    title="Image Generation with Stable Diffusion 3 medium and ControlNet",
    description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet."

)

interface.launch()