File size: 1,525 Bytes
683afc3
c1497a6
0737dc8
74c4e79
b1029c2
97c3973
b1029c2
604797f
feede18
4fbc46c
c1497a6
683afc3
b12bc82
a88d434
88a2fa1
b1029c2
bcbf6e0
0737dc8
74c4e79
dbeec98
e92cda4
dbeec98
 
97c3973
 
 
dbeec98
b1029c2
 
 
97c3973
 
 
683afc3
7968596
 
 
 
 
dbeec98
8f4ea62
dbeec98
7968596
 
 
 
9754bfe
7968596
683afc3
7968596
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
from huggingface_hub import login
import os
import spaces
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torch
import tempfile

token = os.getenv("HF_TOKEN")
login(token=token)


pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")



@spaces.GPU
def generate_image(prompt, reference_image, controlnet_conditioning_scale):
    style_images = [load_image(f.name) for f in reference_image]

    pipeline.set_ip_adapter_scale(controlnet_conditioning_scale)

    image = pipeline(
        prompt=prompt,
        ip_adapter_image=[style_images],
        negative_prompt="",
        guidance_scale=5,
        num_inference_steps=30,
    ).images[0]

    return image

# Set up Gradio interface
interface = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Textbox(label="Prompt"),
        # gr.Image( type= "filepath",label="Reference Image (Style)"),
        gr.File(file_count="multiple",label="Reference Image (Style)"),
        gr.Slider(label="Control Net Conditioning Scale", minimum=0, maximum=1.0, step=0.1, value=1.0),
    ],
    outputs="image",
    title="Image Generation with Stable Diffusion 3 medium and ControlNet",
    description="Generates an image based on a text prompt and a reference image using Stable Diffusion 3 medium with ControlNet."

)

interface.launch()