Spaces:
Sleeping
Sleeping
File size: 9,291 Bytes
3a61454 b1e8012 d0ec537 b1e8012 1d486bb b1e8012 97c2ba7 d0ec537 97c2ba7 1d486bb 97c2ba7 1d486bb 97c2ba7 b1e8012 97c2ba7 2644c4d a9345e7 97c2ba7 a9345e7 97c2ba7 1d486bb 97c2ba7 8384234 97c2ba7 a9345e7 97c2ba7 42fa5c8 97c2ba7 42fa5c8 97c2ba7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix
import plotly.express as px
import plotly.graph_objects as go
def load_data():
data = pd.read_csv('exported_named_train_good.csv')
data_test = pd.read_csv('exported_named_test_good.csv')
X_train = data.drop("Target", axis=1)
y_train = data['Target']
X_test = data_test.drop('Target', axis=1)
y_test = data_test['Target']
return X_train, y_train, X_test, y_test, X_train.columns
def train_models(X_train, y_train, X_test, y_test):
models = {
"Logistic Regression": LogisticRegression(random_state=42),
"Decision Tree": DecisionTreeClassifier(random_state=42),
"Random Forest": RandomForestClassifier(random_state=42),
"Gradient Boost": GradientBoostingClassifier(random_state=42)
}
results = {}
for name, model in models.items():
model.fit(X_train, y_train)
# Predictions
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
# Metrics
results[name] = {
'model': model,
'train_metrics': {
'accuracy': accuracy_score(y_train, y_train_pred),
'f1': f1_score(y_train, y_train_pred, average='weighted'),
'precision': precision_score(y_train, y_train_pred),
'recall': recall_score(y_train, y_train_pred),
'roc_auc': roc_auc_score(y_train, y_train_pred)
},
'test_metrics': {
'accuracy': accuracy_score(y_test, y_test_pred),
'f1': f1_score(y_test, y_test_pred, average='weighted'),
'precision': precision_score(y_test, y_test_pred),
'recall': recall_score(y_test, y_test_pred),
'roc_auc': roc_auc_score(y_test, y_test_pred)
}
}
return results
def plot_model_performance(results):
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
# Training metrics
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
for model in results.keys()}
train_df = pd.DataFrame(train_data, index=metrics)
train_df.plot(kind='bar', ax=axes[0], title='Training Performance')
axes[0].set_ylim(0, 1)
# Test metrics
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
for model in results.keys()}
test_df = pd.DataFrame(test_data, index=metrics)
test_df.plot(kind='bar', ax=axes[1], title='Test Performance')
axes[1].set_ylim(0, 1)
plt.tight_layout()
return fig
def plot_feature_importance(model, feature_names, model_type):
plt.figure(figsize=(10, 6))
if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
importance = model.feature_importances_
elif model_type == "Logistic Regression":
importance = np.abs(model.coef_[0])
importance_df = pd.DataFrame({
'feature': feature_names,
'importance': importance
}).sort_values('importance', ascending=True)
plt.barh(importance_df['feature'], importance_df['importance'])
plt.title(f"Feature Importance - {model_type}")
return plt.gcf()
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_auc_score
import seaborn as sns
# Configuration de la page
st.set_page_config(layout="wide", page_title="ML Dashboard")
# Style personnalisé
st.markdown("""
<style>
/* Cartes stylisées */
div.css-1r6slb0.e1tzin5v2 {
background-color: #FFFFFF;
border: 1px solid #EEEEEE;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
/* Headers */
.main-header {
font-size: 2rem;
font-weight: 700;
color: #1E88E5;
text-align: center;
margin-bottom: 2rem;
}
/* Metric containers */
div.css-12w0qpk.e1tzin5v2 {
background-color: #F8F9FA;
padding: 1rem;
border-radius: 8px;
text-align: center;
}
/* Metric values */
div.css-1xarl3l.e16fv1kl1 {
font-size: 1.8rem;
font-weight: 700;
color: #1E88E5;
}
</style>
""", unsafe_allow_html=True)
def plot_performance_comparison(results, metric='test_metrics'):
"""Crée un graphique de comparaison des performances avec des couleurs distinctes"""
metrics = ['accuracy', 'f1', 'recall', 'roc_auc']
model_names = list(results.keys())
# Définir des couleurs distinctes pour chaque modèle
colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4']
data = {model: [results[model][metric][m] for m in metrics]
for model in model_names}
fig, ax = plt.subplots(figsize=(10, 6))
x = np.arange(len(metrics))
width = 0.2
for i, (model, values) in enumerate(data.items()):
ax.bar(x + i*width, values, width, label=model, color=colors[i])
ax.set_ylabel('Score')
ax.set_title(f'Comparaison des performances ({metric.split("_")[0].title()})')
ax.set_xticks(x + width * (len(model_names)-1)/2)
ax.set_xticklabels(metrics)
ax.legend()
ax.grid(True, alpha=0.3)
plt.ylim(0, 1)
return fig
def create_metric_card(title, value):
"""Crée une carte de métrique stylisée"""
st.markdown(f"""
<div style="
background-color: white;
padding: 1rem;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
text-align: center;
margin-bottom: 1rem;
">
<h3 style="color: #666; font-size: 1rem; margin-bottom: 0.5rem;">{title}</h3>
<p style="color: #1E88E5; font-size: 1.8rem; font-weight: bold; margin: 0;">{value:.3f}</p>
</div>
""", unsafe_allow_html=True)
def app():
# Header
st.markdown('<h1 class="main-header">Tableau de Bord ML</h1>', unsafe_allow_html=True)
# Charger et préparer les données
X_train, y_train, X_test, y_test, feature_names = load_data()
# Sidebar pour la sélection du modèle
with st.sidebar:
st.markdown('<h2 style="color: #1E88E5;">Configuration</h2>', unsafe_allow_html=True)
selected_model = st.selectbox(
"Sélectionner un modèle",
["Logistic Regression", "Decision Tree", "Random Forest", "Gradient Boost"]
)
# Entraînement des modèles si pas déjà fait
if 'model_results' not in st.session_state:
with st.spinner("⏳ Entraînement des modèles..."):
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
# Layout principal
col1, col2 = st.columns([2, 1])
with col1:
# Graphiques de performance
st.markdown("### 📊 Comparaison des Performances")
tab1, tab2 = st.tabs(["🎯 Test", "📈 Entraînement"])
with tab1:
fig_test = plot_performance_comparison(st.session_state.model_results, 'test_metrics')
st.pyplot(fig_test)
with tab2:
fig_train = plot_performance_comparison(st.session_state.model_results, 'train_metrics')
st.pyplot(fig_train)
with col2:
# Métriques détaillées du modèle sélectionné
st.markdown(f"### 📌 Métriques - {selected_model}")
metrics = st.session_state.model_results[selected_model]['test_metrics']
for metric, value in metrics.items():
if metric != 'precision': # On exclut la précision
create_metric_card(metric.upper(), value)
# Section inférieure
st.markdown("### 🔍 Analyse Détaillée")
col3, col4 = st.columns(2)
with col3:
# Feature Importance
current_model = st.session_state.model_results[selected_model]['model']
if hasattr(current_model, 'feature_importances_') or hasattr(current_model, 'coef_'):
fig_importance = plt.figure(figsize=(10, 6))
if hasattr(current_model, 'feature_importances_'):
importances = current_model.feature_importances_
else:
importances = np.abs(current_model.coef_[0])
plt.barh(feature_names, importances)
plt.title("Importance des Caractéristiques")
st.pyplot(fig_importance)
with col4:
# Matrice de corrélation
fig_corr = plt.figure(figsize=(10, 8))
sns.heatmap(X_train.corr(), annot=True, cmap='coolwarm', center=0)
plt.title("Matrice de Corrélation")
st.pyplot(fig_corr)
if __name__ == "__main__":
app() |