File size: 9,291 Bytes
3a61454
 
 
 
 
 
b1e8012
d0ec537
b1e8012
 
1d486bb
 
 
b1e8012
97c2ba7
 
 
 
 
 
 
 
d0ec537
97c2ba7
1d486bb
97c2ba7
 
 
 
1d486bb
97c2ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1e8012
97c2ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644c4d
a9345e7
97c2ba7
 
 
 
 
 
 
 
 
a9345e7
97c2ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d486bb
97c2ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8384234
97c2ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9345e7
97c2ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42fa5c8
97c2ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42fa5c8
97c2ba7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix
import plotly.express as px
import plotly.graph_objects as go

def load_data():
	data = pd.read_csv('exported_named_train_good.csv')
	data_test = pd.read_csv('exported_named_test_good.csv')
	X_train = data.drop("Target", axis=1)
	y_train = data['Target']
	X_test = data_test.drop('Target', axis=1)
	y_test = data_test['Target']
	return X_train, y_train, X_test, y_test, X_train.columns

def train_models(X_train, y_train, X_test, y_test):
	models = {
    	"Logistic Regression": LogisticRegression(random_state=42),
    	"Decision Tree": DecisionTreeClassifier(random_state=42),
    	"Random Forest": RandomForestClassifier(random_state=42),
    	"Gradient Boost": GradientBoostingClassifier(random_state=42)
	}
    
	results = {}
	for name, model in models.items():
    	model.fit(X_train, y_train)
   	 
    	# Predictions
    	y_train_pred = model.predict(X_train)
    	y_test_pred = model.predict(X_test)
   	 
    	# Metrics
    	results[name] = {
        	'model': model,
        	'train_metrics': {
            	'accuracy': accuracy_score(y_train, y_train_pred),
            	'f1': f1_score(y_train, y_train_pred, average='weighted'),
            	'precision': precision_score(y_train, y_train_pred),
            	'recall': recall_score(y_train, y_train_pred),
            	'roc_auc': roc_auc_score(y_train, y_train_pred)
        	},
        	'test_metrics': {
            	'accuracy': accuracy_score(y_test, y_test_pred),
            	'f1': f1_score(y_test, y_test_pred, average='weighted'),
            	'precision': precision_score(y_test, y_test_pred),
            	'recall': recall_score(y_test, y_test_pred),
            	'roc_auc': roc_auc_score(y_test, y_test_pred)
        	}
    	}
    
	return results

def plot_model_performance(results):
	metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
	fig, axes = plt.subplots(1, 2, figsize=(15, 6))
    
	# Training metrics
	train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
             	for model in results.keys()}
	train_df = pd.DataFrame(train_data, index=metrics)
	train_df.plot(kind='bar', ax=axes[0], title='Training Performance')
	axes[0].set_ylim(0, 1)
    
	# Test metrics
	test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
            	for model in results.keys()}
	test_df = pd.DataFrame(test_data, index=metrics)
	test_df.plot(kind='bar', ax=axes[1], title='Test Performance')
	axes[1].set_ylim(0, 1)
    
	plt.tight_layout()
	return fig

def plot_feature_importance(model, feature_names, model_type):
	plt.figure(figsize=(10, 6))
    
	if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
    	importance = model.feature_importances_
	elif model_type == "Logistic Regression":
    	importance = np.abs(model.coef_[0])
    
	importance_df = pd.DataFrame({
    	'feature': feature_names,
    	'importance': importance
	}).sort_values('importance', ascending=True)
    
	plt.barh(importance_df['feature'], importance_df['importance'])
	plt.title(f"Feature Importance - {model_type}")
	return plt.gcf()


import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_auc_score
import seaborn as sns

# Configuration de la page
st.set_page_config(layout="wide", page_title="ML Dashboard")

# Style personnalisé
st.markdown("""
<style>
    /* Cartes stylisées */
    div.css-1r6slb0.e1tzin5v2 {
        background-color: #FFFFFF;
        border: 1px solid #EEEEEE;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }

    /* Headers */
    .main-header {
        font-size: 2rem;
        font-weight: 700;
        color: #1E88E5;
        text-align: center;
        margin-bottom: 2rem;
    }
    
    /* Metric containers */
    div.css-12w0qpk.e1tzin5v2 {
        background-color: #F8F9FA;
        padding: 1rem;
        border-radius: 8px;
        text-align: center;
    }
    
    /* Metric values */
    div.css-1xarl3l.e16fv1kl1 {
        font-size: 1.8rem;
        font-weight: 700;
        color: #1E88E5;
    }
</style>
""", unsafe_allow_html=True)

def plot_performance_comparison(results, metric='test_metrics'):
    """Crée un graphique de comparaison des performances avec des couleurs distinctes"""
    metrics = ['accuracy', 'f1', 'recall', 'roc_auc']
    model_names = list(results.keys())
    
    # Définir des couleurs distinctes pour chaque modèle
    colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4']
    
    data = {model: [results[model][metric][m] for m in metrics] 
            for model in model_names}
    
    fig, ax = plt.subplots(figsize=(10, 6))
    x = np.arange(len(metrics))
    width = 0.2
    
    for i, (model, values) in enumerate(data.items()):
        ax.bar(x + i*width, values, width, label=model, color=colors[i])
    
    ax.set_ylabel('Score')
    ax.set_title(f'Comparaison des performances ({metric.split("_")[0].title()})')
    ax.set_xticks(x + width * (len(model_names)-1)/2)
    ax.set_xticklabels(metrics)
    ax.legend()
    ax.grid(True, alpha=0.3)
    plt.ylim(0, 1)
    
    return fig

def create_metric_card(title, value):
    """Crée une carte de métrique stylisée"""
    st.markdown(f"""
        <div style="
            background-color: white;
            padding: 1rem;
            border-radius: 8px;
            box-shadow: 0 2px 4px rgba(0,0,0,0.1);
            text-align: center;
            margin-bottom: 1rem;
        ">
            <h3 style="color: #666; font-size: 1rem; margin-bottom: 0.5rem;">{title}</h3>
            <p style="color: #1E88E5; font-size: 1.8rem; font-weight: bold; margin: 0;">{value:.3f}</p>
        </div>
    """, unsafe_allow_html=True)

def app():
    # Header
    st.markdown('<h1 class="main-header">Tableau de Bord ML</h1>', unsafe_allow_html=True)
    
    # Charger et préparer les données
    X_train, y_train, X_test, y_test, feature_names = load_data()
    
    # Sidebar pour la sélection du modèle
    with st.sidebar:
        st.markdown('<h2 style="color: #1E88E5;">Configuration</h2>', unsafe_allow_html=True)
        selected_model = st.selectbox(
            "Sélectionner un modèle",
            ["Logistic Regression", "Decision Tree", "Random Forest", "Gradient Boost"]
        )
    
    # Entraînement des modèles si pas déjà fait
    if 'model_results' not in st.session_state:
        with st.spinner("⏳ Entraînement des modèles..."):
            st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
    
    # Layout principal
    col1, col2 = st.columns([2, 1])
    
    with col1:
        # Graphiques de performance
        st.markdown("### 📊 Comparaison des Performances")
        
        tab1, tab2 = st.tabs(["🎯 Test", "📈 Entraînement"])
        
        with tab1:
            fig_test = plot_performance_comparison(st.session_state.model_results, 'test_metrics')
            st.pyplot(fig_test)
        
        with tab2:
            fig_train = plot_performance_comparison(st.session_state.model_results, 'train_metrics')
            st.pyplot(fig_train)
    
    with col2:
        # Métriques détaillées du modèle sélectionné
        st.markdown(f"### 📌 Métriques - {selected_model}")
        
        metrics = st.session_state.model_results[selected_model]['test_metrics']
        for metric, value in metrics.items():
            if metric != 'precision':  # On exclut la précision
                create_metric_card(metric.upper(), value)
    
    # Section inférieure
    st.markdown("### 🔍 Analyse Détaillée")
    col3, col4 = st.columns(2)
    
    with col3:
        # Feature Importance
        current_model = st.session_state.model_results[selected_model]['model']
        if hasattr(current_model, 'feature_importances_') or hasattr(current_model, 'coef_'):
            fig_importance = plt.figure(figsize=(10, 6))
            if hasattr(current_model, 'feature_importances_'):
                importances = current_model.feature_importances_
            else:
                importances = np.abs(current_model.coef_[0])
            
            plt.barh(feature_names, importances)
            plt.title("Importance des Caractéristiques")
            st.pyplot(fig_importance)
    
    with col4:
        # Matrice de corrélation
        fig_corr = plt.figure(figsize=(10, 8))
        sns.heatmap(X_train.corr(), annot=True, cmap='coolwarm', center=0)
        plt.title("Matrice de Corrélation")
        st.pyplot(fig_corr)

if __name__ == "__main__":
    app()