Spaces:
Sleeping
Sleeping
File size: 10,884 Bytes
3a61454 00994c4 3a61454 b1e8012 d0ec537 b1e8012 00994c4 b1e8012 97c2ba7 00994c4 d0ec537 97c2ba7 00994c4 97c2ba7 00994c4 fc8d6e6 00994c4 b1e8012 97c2ba7 00994c4 97c2ba7 00994c4 97c2ba7 00994c4 1d486bb 00994c4 97c2ba7 00994c4 42fa5c8 ee9aa01 97c2ba7 ee9aa01 97c2ba7 00994c4 97c2ba7 00994c4 97c2ba7 ee9aa01 97c2ba7 ee9aa01 00994c4 ee9aa01 00994c4 ee9aa01 00994c4 ee9aa01 97c2ba7 ee9aa01 00994c4 ee9aa01 42fa5c8 97c2ba7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
import shap
def load_data():
data = pd.read_csv('exported_named_train_good.csv')
data_test = pd.read_csv('exported_named_test_good.csv')
X_train = data.drop("Target", axis=1)
y_train = data['Target']
X_test = data_test.drop('Target', axis=1)
y_test = data_test['Target']
return X_train, y_train, X_test, y_test, X_train.columns
def train_models(X_train, y_train, X_test, y_test):
models = {
"Logistic Regression": LogisticRegression(random_state=42),
"Decision Tree": DecisionTreeClassifier(random_state=42),
"Random Forest": RandomForestClassifier(random_state=42),
"Gradient Boost": GradientBoostingClassifier(random_state=42)
}
results = {}
for name, model in models.items():
model.fit(X_train, y_train)
# Predictions
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
# Metrics
results[name] = {
'model': model,
'train_metrics': {
'accuracy': accuracy_score(y_train, y_train_pred),
'f1': f1_score(y_train, y_train_pred, average='weighted'),
'precision': precision_score(y_train, y_train_pred),
'recall': recall_score(y_train, y_train_pred),
'roc_auc': roc_auc_score(y_train, y_train_pred)
},
'test_metrics': {
'accuracy': accuracy_score(y_test, y_test_pred),
'f1': f1_score(y_test, y_test_pred, average='weighted'),
'precision': precision_score(y_test, y_test_pred),
'recall': recall_score(y_test, y_test_pred),
'roc_auc': roc_auc_score(y_test, y_test_pred)
}
}
return results
def plot_model_performance(results):
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
# Training metrics
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
for model in results.keys()}
train_df = pd.DataFrame(train_data, index=metrics)
train_df.plot(kind='bar', ax=axes[0], title='Training Performance')
axes[0].set_ylim(0, 1)
# Test metrics
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
for model in results.keys()}
test_df = pd.DataFrame(test_data, index=metrics)
test_df.plot(kind='bar', ax=axes[1], title='Test Performance')
axes[1].set_ylim(0, 1)
plt.tight_layout()
return fig
def plot_feature_importance(model, feature_names, model_type):
plt.figure(figsize=(10, 6))
if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
importance = model.feature_importances_
elif model_type == "Logistic Regression":
importance = np.abs(model.coef_[0])
importance_df = pd.DataFrame({
'feature': feature_names,
'importance': importance
}).sort_values('importance', ascending=True)
plt.barh(importance_df['feature'], importance_df['importance'])
plt.title(f"Feature Importance - {model_type}")
return plt.gcf()
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
import shap
# Configuration de la page et du thème
st.set_page_config(
page_title="ML Model Interpreter",
layout="wide",
initial_sidebar_state="expanded"
)
# CSS personnalisé
st.markdown("""
<style>
/* Couleurs principales */
:root {
--primary-blue: #1E88E5;
--light-blue: #90CAF9;
--dark-blue: #0D47A1;
--white: #FFFFFF;
}
/* En-tête principal */
.main-header {
color: var(--dark-blue);
text-align: center;
padding: 1rem;
background: linear-gradient(90deg, var(--white) 0%, var(--light-blue) 50%, var(--white) 100%);
border-radius: 10px;
margin-bottom: 2rem;
}
/* Carte pour les métriques */
.metric-card {
background-color: white;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin-bottom: 1rem;
}
/* Style pour les sous-titres */
.sub-header {
color: var(--primary-blue);
border-bottom: 2px solid var(--light-blue);
padding-bottom: 0.5rem;
margin-bottom: 1rem;
}
/* Style pour les valeurs de métriques */
.metric-value {
font-size: 1.5rem;
font-weight: bold;
color: var(--primary-blue);
}
/* Style pour la barre latérale */
.sidebar .sidebar-content {
background-color: var(--white);
}
/* Style pour les boutons */
.stButton > button {
background-color: var(--primary-blue);
color: white;
border-radius: 5px;
border: none;
padding: 0.5rem 1rem;
}
/* Style pour les sliders */
.stSlider > div > div {
background-color: var(--light-blue);
}
/* Style pour les selectbox */
.stSelectbox > div > div {
background-color: white;
border: 1px solid var(--light-blue);
}
</style>
""", unsafe_allow_html=True)
def custom_metric_card(title, value, prefix=""):
return f"""
<div class="metric-card">
<h3 style="color: #1E88E5; margin-bottom: 0.5rem;">{title}</h3>
<p class="metric-value">{prefix}{value:.4f}</p>
</div>
"""
def plot_with_style(fig):
# Style matplotlib
plt.style.use('seaborn')
fig.patch.set_facecolor('#FFFFFF')
for ax in fig.axes:
ax.set_facecolor('#F8F9FA')
ax.grid(True, linestyle='--', alpha=0.7)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
return fig
# [Fonctions load_data et train_models restent identiques]
def plot_model_performance(results):
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
# Configuration du style
plt.style.use('seaborn')
colors = ['#1E88E5', '#90CAF9', '#0D47A1', '#42A5F5']
# Training metrics
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
for model in results.keys()}
train_df = pd.DataFrame(train_data, index=metrics)
train_df.plot(kind='bar', ax=axes[0], title='Performance d\'Entraînement',
color=colors)
axes[0].set_ylim(0, 1)
# Test metrics
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
for model in results.keys()}
test_df = pd.DataFrame(test_data, index=metrics)
test_df.plot(kind='bar', ax=axes[1], title='Performance de Test',
color=colors)
axes[1].set_ylim(0, 1)
# Style des graphiques
for ax in axes:
ax.set_facecolor('#F8F9FA')
ax.grid(True, linestyle='--', alpha=0.7)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
plt.tight_layout()
return fig
def app():
# En-tête principal avec style personnalisé
st.markdown('<h1 class="main-header">Interpréteur de Modèles ML</h1>', unsafe_allow_html=True)
# Load data
X_train, y_train, X_test, y_test, feature_names = load_data()
# Train models if not in session state
if 'model_results' not in st.session_state:
with st.spinner("🔄 Entraînement des modèles en cours..."):
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
# Sidebar avec style personnalisé
with st.sidebar:
st.markdown('<h2 style="color: #1E88E5;">Navigation</h2>', unsafe_allow_html=True)
selected_model = st.selectbox(
"📊 Sélectionnez un modèle",
list(st.session_state.model_results.keys())
)
st.markdown('<hr style="margin: 1rem 0;">', unsafe_allow_html=True)
page = st.radio(
"📑 Sélectionnez une section",
["Performance des modèles",
"Interprétation du modèle",
"Analyse des caractéristiques",
"Simulateur de prédictions"]
)
current_model = st.session_state.model_results[selected_model]['model']
# Container principal avec padding
main_container = st.container()
with main_container:
if page == "Performance des modèles":
st.markdown('<h2 class="sub-header">Performance des modèles</h2>', unsafe_allow_html=True)
# Graphiques de performance
performance_fig = plot_model_performance(st.session_state.model_results)
st.pyplot(plot_with_style(performance_fig))
# Métriques détaillées dans des cartes
st.markdown('<h3 class="sub-header">Métriques détaillées</h3>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown('<h4 style="color: #1E88E5;">Entraînement</h4>', unsafe_allow_html=True)
for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
st.markdown(custom_metric_card(metric.capitalize(), value), unsafe_allow_html=True)
with col2:
st.markdown('<h4 style="color: #1E88E5;">Test</h4>', unsafe_allow_html=True)
for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
st.markdown(custom_metric_card(metric.capitalize(), value), unsafe_allow_html=True)
# [Le reste des sections avec style adapté...]
if __name__ == "__main__":
app() |