File size: 10,884 Bytes
3a61454
 
 
 
00994c4
3a61454
 
b1e8012
d0ec537
b1e8012
 
00994c4
 
b1e8012
97c2ba7
00994c4
 
 
 
 
 
 
d0ec537
97c2ba7
00994c4
 
 
 
 
 
97c2ba7
00994c4
 
fc8d6e6
00994c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1e8012
97c2ba7
00994c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97c2ba7
 
00994c4
97c2ba7
00994c4
 
 
 
1d486bb
00994c4
 
 
 
97c2ba7
00994c4
 
 
42fa5c8
ee9aa01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97c2ba7
ee9aa01
 
97c2ba7
00994c4
97c2ba7
 
00994c4
97c2ba7
ee9aa01
97c2ba7
 
ee9aa01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00994c4
 
 
ee9aa01
 
 
 
 
00994c4
ee9aa01
 
 
00994c4
ee9aa01
 
 
97c2ba7
ee9aa01
 
 
 
00994c4
ee9aa01
 
 
 
 
 
42fa5c8
97c2ba7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
import shap

def load_data():
    data = pd.read_csv('exported_named_train_good.csv')
    data_test = pd.read_csv('exported_named_test_good.csv')
    X_train = data.drop("Target", axis=1)
    y_train = data['Target']
    X_test = data_test.drop('Target', axis=1)
    y_test = data_test['Target']
    return X_train, y_train, X_test, y_test, X_train.columns

def train_models(X_train, y_train, X_test, y_test):
    models = {
        "Logistic Regression": LogisticRegression(random_state=42),
        "Decision Tree": DecisionTreeClassifier(random_state=42),
        "Random Forest": RandomForestClassifier(random_state=42),
        "Gradient Boost": GradientBoostingClassifier(random_state=42)
    }
    
    results = {}
    for name, model in models.items():
        model.fit(X_train, y_train)
        
        # Predictions
        y_train_pred = model.predict(X_train)
        y_test_pred = model.predict(X_test)
        
        # Metrics
        results[name] = {
            'model': model,
            'train_metrics': {
                'accuracy': accuracy_score(y_train, y_train_pred),
                'f1': f1_score(y_train, y_train_pred, average='weighted'),
                'precision': precision_score(y_train, y_train_pred),
                'recall': recall_score(y_train, y_train_pred),
                'roc_auc': roc_auc_score(y_train, y_train_pred)
            },
            'test_metrics': {
                'accuracy': accuracy_score(y_test, y_test_pred),
                'f1': f1_score(y_test, y_test_pred, average='weighted'),
                'precision': precision_score(y_test, y_test_pred),
                'recall': recall_score(y_test, y_test_pred),
                'roc_auc': roc_auc_score(y_test, y_test_pred)
            }
        }
    
    return results

def plot_model_performance(results):
    metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
    fig, axes = plt.subplots(1, 2, figsize=(15, 6))
    
    # Training metrics
    train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics] 
                 for model in results.keys()}
    train_df = pd.DataFrame(train_data, index=metrics)
    train_df.plot(kind='bar', ax=axes[0], title='Training Performance')
    axes[0].set_ylim(0, 1)
    
    # Test metrics
    test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics] 
                for model in results.keys()}
    test_df = pd.DataFrame(test_data, index=metrics)
    test_df.plot(kind='bar', ax=axes[1], title='Test Performance')
    axes[1].set_ylim(0, 1)
    
    plt.tight_layout()
    return fig

def plot_feature_importance(model, feature_names, model_type):
    plt.figure(figsize=(10, 6))
    
    if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
        importance = model.feature_importances_
    elif model_type == "Logistic Regression":
        importance = np.abs(model.coef_[0])
    
    importance_df = pd.DataFrame({
        'feature': feature_names,
        'importance': importance
    }).sort_values('importance', ascending=True)
    
    plt.barh(importance_df['feature'], importance_df['importance'])
    plt.title(f"Feature Importance - {model_type}")
    return plt.gcf()

import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
import shap

# Configuration de la page et du thème
st.set_page_config(
    page_title="ML Model Interpreter",
    layout="wide",
    initial_sidebar_state="expanded"
)

# CSS personnalisé
st.markdown("""
<style>
    /* Couleurs principales */
    :root {
        --primary-blue: #1E88E5;
        --light-blue: #90CAF9;
        --dark-blue: #0D47A1;
        --white: #FFFFFF;
    }
    
    /* En-tête principal */
    .main-header {
        color: var(--dark-blue);
        text-align: center;
        padding: 1rem;
        background: linear-gradient(90deg, var(--white) 0%, var(--light-blue) 50%, var(--white) 100%);
        border-radius: 10px;
        margin-bottom: 2rem;
    }
    
    /* Carte pour les métriques */
    .metric-card {
        background-color: white;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        margin-bottom: 1rem;
    }
    
    /* Style pour les sous-titres */
    .sub-header {
        color: var(--primary-blue);
        border-bottom: 2px solid var(--light-blue);
        padding-bottom: 0.5rem;
        margin-bottom: 1rem;
    }
    
    /* Style pour les valeurs de métriques */
    .metric-value {
        font-size: 1.5rem;
        font-weight: bold;
        color: var(--primary-blue);
    }
    
    /* Style pour la barre latérale */
    .sidebar .sidebar-content {
        background-color: var(--white);
    }
    
    /* Style pour les boutons */
    .stButton > button {
        background-color: var(--primary-blue);
        color: white;
        border-radius: 5px;
        border: none;
        padding: 0.5rem 1rem;
    }
    
    /* Style pour les sliders */
    .stSlider > div > div {
        background-color: var(--light-blue);
    }
    
    /* Style pour les selectbox */
    .stSelectbox > div > div {
        background-color: white;
        border: 1px solid var(--light-blue);
    }
</style>
""", unsafe_allow_html=True)

def custom_metric_card(title, value, prefix=""):
    return f"""
    <div class="metric-card">
        <h3 style="color: #1E88E5; margin-bottom: 0.5rem;">{title}</h3>
        <p class="metric-value">{prefix}{value:.4f}</p>
    </div>
    """

def plot_with_style(fig):
    # Style matplotlib
    plt.style.use('seaborn')
    fig.patch.set_facecolor('#FFFFFF')
    for ax in fig.axes:
        ax.set_facecolor('#F8F9FA')
        ax.grid(True, linestyle='--', alpha=0.7)
        ax.spines['top'].set_visible(False)
        ax.spines['right'].set_visible(False)
    return fig

# [Fonctions load_data et train_models restent identiques]

def plot_model_performance(results):
    metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
    fig, axes = plt.subplots(1, 2, figsize=(15, 6))
    
    # Configuration du style
    plt.style.use('seaborn')
    colors = ['#1E88E5', '#90CAF9', '#0D47A1', '#42A5F5']
    
    # Training metrics
    train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics] 
                 for model in results.keys()}
    train_df = pd.DataFrame(train_data, index=metrics)
    train_df.plot(kind='bar', ax=axes[0], title='Performance d\'Entraînement',
                 color=colors)
    axes[0].set_ylim(0, 1)
    
    # Test metrics
    test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics] 
                for model in results.keys()}
    test_df = pd.DataFrame(test_data, index=metrics)
    test_df.plot(kind='bar', ax=axes[1], title='Performance de Test',
                color=colors)
    axes[1].set_ylim(0, 1)
    
    # Style des graphiques
    for ax in axes:
        ax.set_facecolor('#F8F9FA')
        ax.grid(True, linestyle='--', alpha=0.7)
        ax.spines['top'].set_visible(False)
        ax.spines['right'].set_visible(False)
        plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
    
    plt.tight_layout()
    return fig

def app():
    # En-tête principal avec style personnalisé
    st.markdown('<h1 class="main-header">Interpréteur de Modèles ML</h1>', unsafe_allow_html=True)
    
    # Load data
    X_train, y_train, X_test, y_test, feature_names = load_data()
    
    # Train models if not in session state
    if 'model_results' not in st.session_state:
        with st.spinner("🔄 Entraînement des modèles en cours..."):
            st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
    
    # Sidebar avec style personnalisé
    with st.sidebar:
        st.markdown('<h2 style="color: #1E88E5;">Navigation</h2>', unsafe_allow_html=True)
        selected_model = st.selectbox(
            "📊 Sélectionnez un modèle",
            list(st.session_state.model_results.keys())
        )
        
        st.markdown('<hr style="margin: 1rem 0;">', unsafe_allow_html=True)
        
        page = st.radio(
            "📑 Sélectionnez une section",
            ["Performance des modèles", 
             "Interprétation du modèle", 
             "Analyse des caractéristiques",
             "Simulateur de prédictions"]
        )
    
    current_model = st.session_state.model_results[selected_model]['model']
    
    # Container principal avec padding
    main_container = st.container()
    with main_container:
        if page == "Performance des modèles":
            st.markdown('<h2 class="sub-header">Performance des modèles</h2>', unsafe_allow_html=True)
            
            # Graphiques de performance
            performance_fig = plot_model_performance(st.session_state.model_results)
            st.pyplot(plot_with_style(performance_fig))
            
            # Métriques détaillées dans des cartes
            st.markdown('<h3 class="sub-header">Métriques détaillées</h3>', unsafe_allow_html=True)
            col1, col2 = st.columns(2)
            
            with col1:
                st.markdown('<h4 style="color: #1E88E5;">Entraînement</h4>', unsafe_allow_html=True)
                for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
                    st.markdown(custom_metric_card(metric.capitalize(), value), unsafe_allow_html=True)
            
            with col2:
                st.markdown('<h4 style="color: #1E88E5;">Test</h4>', unsafe_allow_html=True)
                for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
                    st.markdown(custom_metric_card(metric.capitalize(), value), unsafe_allow_html=True)
        
        # [Le reste des sections avec style adapté...]

if __name__ == "__main__":
    app()