Spaces:
Running
Running
File size: 7,848 Bytes
e4e2e9d 55b8086 e4e2e9d f239892 e4e2e9d dd95e6f e4e2e9d b990576 e4e2e9d f239892 55b8086 f239892 e4e2e9d f239892 e4e2e9d b990576 e4e2e9d f239892 e4e2e9d f239892 e4e2e9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import torch
from torch import nn
from typing import Optional
from transformers import (
AutoModel,
AutoTokenizer,
AutoConfig,
AutoModelForSequenceClassification
)
import os
from safetensors.torch import save_file
class SignalDetector(nn.Module):
def __init__(self, model_and_tokenizer_path) -> None:
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(model_and_tokenizer_path)
self.signal_detector = AutoModelForSequenceClassification.from_pretrained(model_and_tokenizer_path)
self.signal_detector.eval()
self.signal_detector.cuda()
@torch.no_grad()
def predict(self, text: str) -> int:
input_ids = self.tokenizer.encode(text)
input_ids = torch.tensor([input_ids]).cuda()
outputs = self.signal_detector(input_ids)
return outputs[0].argmax().item()
class ST2ModelV2(nn.Module):
def __init__(self, args):
super(ST2ModelV2, self).__init__()
self.args = args
self.config = AutoConfig.from_pretrained("roberta-large")
self.model = AutoModel.from_pretrained("roberta-large")
self.tokenizer = AutoTokenizer.from_pretrained("roberta-large")
classifier_dropout = self.args.dropout
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(self.config.hidden_size, 6)
if self.args.signal_classification and not self.args.pretrained_signal_detector:
self.signal_classifier = nn.Linear(self.config.hidden_size, 2)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
offset_mapping=None,
signal_bias_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None, # [batch_size, 3]
end_positions: Optional[torch.Tensor] = None, # [batch_size, 3]
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output) # [batch_size, max_seq_length, 6]
start_arg0_logits, end_arg0_logits, start_arg1_logits, end_arg1_logits, start_sig_logits, end_sig_logits = logits.split(1, dim=-1)
start_arg0_logits = start_arg0_logits.squeeze(-1).contiguous()
end_arg0_logits = end_arg0_logits.squeeze(-1).contiguous()
start_arg1_logits = start_arg1_logits.squeeze(-1).contiguous()
end_arg1_logits = end_arg1_logits.squeeze(-1).contiguous()
start_sig_logits = start_sig_logits.squeeze(-1).contiguous()
end_sig_logits = end_sig_logits.squeeze(-1).contiguous()
# start_arg0_logits -= (1 - attention_mask) * 1e4
# end_arg0_logits -= (1 - attention_mask) * 1e4
# start_arg1_logits -= (1 - attention_mask) * 1e4
# end_arg1_logits -= (1 - attention_mask) * 1e4
# start_arg0_logits[:, 0] = -1e4
# end_arg0_logits[:, 0] = -1e4
# start_arg1_logits[:, 0] = -1e4
# end_arg1_logits[:, 0] = -1e4
signal_classification_logits = None
if self.args.signal_classification and not self.args.pretrained_signal_detector:
signal_classification_logits = self.signal_classifier(sequence_output[:, 0, :])
# start_logits = start_logits.squeeze(-1).contiguous()
# end_logits = end_logits.squeeze(-1).contiguous()
return {
'start_arg0_logits': start_arg0_logits,
'end_arg0_logits': end_arg0_logits,
'start_arg1_logits': start_arg1_logits,
'end_arg1_logits': end_arg1_logits,
'start_sig_logits': start_sig_logits,
'end_sig_logits': end_sig_logits,
'signal_classification_logits': signal_classification_logits,
}
def beam_search_position_selector(
self,
start_cause_logits,
start_effect_logits,
end_cause_logits,
end_effect_logits,
topk=5
):
start_cause_logits = torch.log(torch.softmax(start_cause_logits, dim=-1))
end_cause_logits = torch.log(torch.softmax(end_cause_logits, dim=-1))
start_effect_logits = torch.log(torch.softmax(start_effect_logits, dim=-1))
end_effect_logits = torch.log(torch.softmax(end_effect_logits, dim=-1))
scores = dict()
for i in range(len(end_cause_logits)):
for j in range(i + 1, len(start_effect_logits)):
scores[str((i, j, "before"))] = end_cause_logits[i].item() + start_effect_logits[j].item()
for i in range(len(end_effect_logits)):
for j in range(i + 1, len(start_cause_logits)):
scores[str((i, j, "after"))] = start_cause_logits[j].item() + end_effect_logits[i].item()
topk_scores = dict()
for i, (index, score) in enumerate(sorted(scores.items(), key=lambda x: x[1], reverse=True)[:topk]):
if eval(index)[2] == 'before':
end_cause = eval(index)[0]
start_effect = eval(index)[1]
this_start_cause_logits = start_cause_logits.clone()
this_start_cause_logits[end_cause + 1:] = -1e9
start_cause_values, start_cause_indices = this_start_cause_logits.topk(topk)
this_end_effect_logits = end_effect_logits.clone()
this_end_effect_logits[:start_effect] = -1e9
end_effect_values, end_effect_indices = this_end_effect_logits.topk(topk)
for m in range(len(start_cause_values)):
for n in range(len(end_effect_values)):
topk_scores[str((start_cause_indices[m].item(), end_cause, start_effect, end_effect_indices[n].item()))] = score + start_cause_values[m].item() + end_effect_values[n].item()
elif eval(index)[2] == 'after':
start_cause = eval(index)[1]
end_effect = eval(index)[0]
this_end_cause_logits = end_cause_logits.clone()
this_end_cause_logits[:start_cause] = -1e9
end_cause_values, end_cause_indices = this_end_cause_logits.topk(topk)
this_start_effect_logits = start_effect_logits.clone()
this_start_effect_logits[end_effect + 1:] = -1e9
start_effect_values, start_effect_indices = this_start_effect_logits.topk(topk)
for m in range(len(end_cause_values)):
for n in range(len(start_effect_values)):
topk_scores[str((start_cause, end_cause_indices[m].item(), start_effect_indices[n].item(), end_effect))] = score + end_cause_values[m].item() + start_effect_values[n].item()
first, second = sorted(topk_scores.items(), key=lambda x: x[1], reverse=True)[:2]
return eval(first[0]), eval(second[0]), first[1], second[1], topk_scores |