File size: 7,848 Bytes
e4e2e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b8086
 
 
e4e2e9d
 
 
 
 
f239892
e4e2e9d
 
 
 
 
 
 
 
 
 
dd95e6f
e4e2e9d
 
 
 
 
 
 
 
 
b990576
e4e2e9d
 
f239892
55b8086
f239892
 
 
 
 
 
 
 
 
 
 
e4e2e9d
 
f239892
e4e2e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b990576
e4e2e9d
 
 
 
 
 
 
 
 
f239892
e4e2e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f239892
e4e2e9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
from torch import nn
from typing import Optional
from transformers import (
    AutoModel, 
    AutoTokenizer, 
    AutoConfig, 
    AutoModelForSequenceClassification
    )
import os
from safetensors.torch import save_file



class SignalDetector(nn.Module):
    def __init__(self, model_and_tokenizer_path) -> None:
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(model_and_tokenizer_path) 
        self.signal_detector = AutoModelForSequenceClassification.from_pretrained(model_and_tokenizer_path)
        self.signal_detector.eval()
        self.signal_detector.cuda()
    
    @torch.no_grad()
    def predict(self, text: str) -> int:
        input_ids = self.tokenizer.encode(text)
        input_ids = torch.tensor([input_ids]).cuda()
        outputs = self.signal_detector(input_ids)
        return outputs[0].argmax().item()

    
class ST2ModelV2(nn.Module):
    def __init__(self, args):
        super(ST2ModelV2, self).__init__()
        self.args = args

        self.config = AutoConfig.from_pretrained("roberta-large")
        self.model = AutoModel.from_pretrained("roberta-large")
        self.tokenizer = AutoTokenizer.from_pretrained("roberta-large")

        classifier_dropout = self.args.dropout
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(self.config.hidden_size, 6)

        
        
        if self.args.signal_classification and not self.args.pretrained_signal_detector:
            self.signal_classifier = nn.Linear(self.config.hidden_size, 2)

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        offset_mapping=None,
        signal_bias_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        start_positions: Optional[torch.Tensor] = None,     # [batch_size, 3]
        end_positions: Optional[torch.Tensor] = None,       # [batch_size, 3]
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        
            
        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)  # [batch_size, max_seq_length, 6]
        start_arg0_logits, end_arg0_logits, start_arg1_logits, end_arg1_logits, start_sig_logits, end_sig_logits = logits.split(1, dim=-1)
        start_arg0_logits = start_arg0_logits.squeeze(-1).contiguous()
        end_arg0_logits = end_arg0_logits.squeeze(-1).contiguous()
        start_arg1_logits = start_arg1_logits.squeeze(-1).contiguous()
        end_arg1_logits = end_arg1_logits.squeeze(-1).contiguous()
        start_sig_logits = start_sig_logits.squeeze(-1).contiguous()
        end_sig_logits = end_sig_logits.squeeze(-1).contiguous()

        # start_arg0_logits -= (1 - attention_mask) * 1e4
        # end_arg0_logits -= (1 - attention_mask) * 1e4
        # start_arg1_logits -= (1 - attention_mask) * 1e4
        # end_arg1_logits -= (1 - attention_mask) * 1e4

        # start_arg0_logits[:, 0] = -1e4
        # end_arg0_logits[:, 0] = -1e4
        # start_arg1_logits[:, 0] = -1e4
        # end_arg1_logits[:, 0] = -1e4

        signal_classification_logits = None
        if self.args.signal_classification and not self.args.pretrained_signal_detector:
            signal_classification_logits = self.signal_classifier(sequence_output[:, 0, :])
        # start_logits = start_logits.squeeze(-1).contiguous()
        # end_logits = end_logits.squeeze(-1).contiguous()
      

        return {
            'start_arg0_logits': start_arg0_logits,
            'end_arg0_logits': end_arg0_logits,
            'start_arg1_logits': start_arg1_logits,
            'end_arg1_logits': end_arg1_logits,
            'start_sig_logits': start_sig_logits,
            'end_sig_logits': end_sig_logits,
            'signal_classification_logits': signal_classification_logits,
            
        }



    def beam_search_position_selector(
        self,
        start_cause_logits, 
        start_effect_logits, 
        end_cause_logits, 
        end_effect_logits,
        topk=5
    ):

        start_cause_logits = torch.log(torch.softmax(start_cause_logits, dim=-1))
        end_cause_logits = torch.log(torch.softmax(end_cause_logits, dim=-1))
        start_effect_logits = torch.log(torch.softmax(start_effect_logits, dim=-1))
        end_effect_logits = torch.log(torch.softmax(end_effect_logits, dim=-1))

        scores = dict()
        for i in range(len(end_cause_logits)):
            
            for j in range(i + 1, len(start_effect_logits)):
                scores[str((i, j, "before"))] = end_cause_logits[i].item() + start_effect_logits[j].item()
        
        for i in range(len(end_effect_logits)):
            for j in range(i + 1, len(start_cause_logits)):
                scores[str((i, j, "after"))] = start_cause_logits[j].item() + end_effect_logits[i].item()
        
        
        topk_scores = dict()
        for i, (index, score) in enumerate(sorted(scores.items(), key=lambda x: x[1], reverse=True)[:topk]):
            if eval(index)[2] == 'before':
                end_cause = eval(index)[0]
                start_effect = eval(index)[1]

                this_start_cause_logits = start_cause_logits.clone()
                this_start_cause_logits[end_cause + 1:] = -1e9
                start_cause_values, start_cause_indices = this_start_cause_logits.topk(topk)

                this_end_effect_logits = end_effect_logits.clone()
                this_end_effect_logits[:start_effect] = -1e9
                end_effect_values, end_effect_indices = this_end_effect_logits.topk(topk)

                for m in range(len(start_cause_values)):
                    for n in range(len(end_effect_values)):
                        topk_scores[str((start_cause_indices[m].item(), end_cause, start_effect, end_effect_indices[n].item()))] = score + start_cause_values[m].item() + end_effect_values[n].item()

            elif eval(index)[2] == 'after':
                start_cause = eval(index)[1]
                end_effect = eval(index)[0]

                this_end_cause_logits = end_cause_logits.clone()
                this_end_cause_logits[:start_cause] = -1e9
                end_cause_values, end_cause_indices = this_end_cause_logits.topk(topk)

                this_start_effect_logits = start_effect_logits.clone()
                this_start_effect_logits[end_effect + 1:] = -1e9
                start_effect_values, start_effect_indices = this_start_effect_logits.topk(topk)

                for m in range(len(end_cause_values)):
                    for n in range(len(start_effect_values)):
                        topk_scores[str((start_cause, end_cause_indices[m].item(), start_effect_indices[n].item(), end_effect))] = score + end_cause_values[m].item() + start_effect_values[n].item()

        first, second = sorted(topk_scores.items(), key=lambda x: x[1], reverse=True)[:2]
        return eval(first[0]), eval(second[0]), first[1], second[1], topk_scores