Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import AutoConfig, AutoTokenizer, AutoModel | |
from huggingface_hub import login | |
import re | |
import copy | |
from modeling_st2 import ST2ModelV2, SignalDetector | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
hf_token = st.secrets["HUGGINGFACE_TOKEN"] | |
login(token=hf_token) | |
def load_model(): | |
config = AutoConfig.from_pretrained("roberta-large") | |
tokenizer = AutoTokenizer.from_pretrained("roberta-large", use_fast=True, add_prefix_space=True) | |
class Args: | |
def __init__(self): | |
self.dropout = 0.1 | |
self.signal_classification = True | |
self.pretrained_signal_detector = False | |
args = Args() | |
model = ST2ModelV2(args) | |
repo_id = "anamargarida/SpanExtractionWithSignalCls_2" | |
filename = "model.safetensors" | |
model_path = hf_hub_download(repo_id=repo_id, filename=filename) | |
state_dict = load_file(model_path) | |
model.load_state_dict(state_dict) | |
return tokenizer, model | |
tokenizer, model = load_model() | |
model.eval() | |
def extract_arguments(text, tokenizer, model, beam_search=True): | |
class Args: | |
def __init__(self): | |
self.signal_classification = True | |
self.pretrained_signal_detector = False | |
args = Args() | |
inputs = tokenizer(text, return_offsets_mapping=True, return_tensors="pt") | |
word_ids = inputs.word_ids() | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
start_cause_logits = outputs["start_arg0_logits"][0] | |
end_cause_logits = outputs["end_arg0_logits"][0] | |
start_effect_logits = outputs["start_arg1_logits"][0] | |
end_effect_logits = outputs["end_arg1_logits"][0] | |
start_signal_logits = outputs["start_sig_logits"][0] | |
end_signal_logits = outputs["end_sig_logits"][0] | |
# Set the first and last token logits to a very low value to ignore them | |
start_cause_logits[0] = -1e-4 | |
end_cause_logits[0] = -1e-4 | |
start_effect_logits[0] = -1e-4 | |
end_effect_logits[0] = -1e-4 | |
start_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 | |
end_cause_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 | |
start_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 | |
end_effect_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 | |
# Beam Search for position selection | |
if beam_search: | |
indices1, indices2, score1, score2, topk_scores = model.beam_search_position_selector( | |
start_cause_logits=start_cause_logits, | |
end_cause_logits=end_cause_logits, | |
start_effect_logits=start_effect_logits, | |
end_effect_logits=end_effect_logits, | |
topk=5 | |
) | |
start_cause1, end_cause1, start_effect1, end_effect1 = indices1 | |
start_cause2, end_cause2, start_effect2, end_effect2 = indices2 | |
else: | |
start_cause1 = start_cause_logits.argmax().item() | |
end_cause1 = end_cause_logits.argmax().item() | |
start_effect1 = start_effect_logits.argmax().item() | |
end_effect1 = end_effect_logits.argmax().item() | |
start_cause2, end_cause2, start_effect2, end_effect2 = None, None, None, None | |
has_signal = 1 | |
if args.signal_classification: | |
if not args.pretrained_signal_detector: | |
has_signal = outputs["signal_classification_logits"].argmax().item() | |
else: | |
has_signal = signal_detector.predict(text=batch["text"]) | |
if has_signal: | |
start_signal_logits[0] = -1e-4 | |
end_signal_logits[0] = -1e-4 | |
start_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 | |
end_signal_logits[len(inputs["input_ids"][0]) - 1] = -1e-4 | |
start_signal = start_signal_logits.argmax().item() | |
end_signal_logits[:start_signal] = -1e4 | |
end_signal_logits[start_signal + 5:] = -1e4 | |
end_signal = end_signal_logits.argmax().item() | |
if not has_signal: | |
start_signal, end_signal = None, None | |
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) | |
token_ids = inputs["input_ids"][0] | |
offset_mapping = inputs["offset_mapping"][0].tolist() | |
def mark_text_by_position(original_text, start_token, end_token, color): | |
"""Marks text in the original string based on character positions.""" | |
# Inserts tags into the original text based on token offsets. | |
if start_token is not None and end_token is not None: | |
#st.write(f"Start: {start_token}, End: {end_token}") | |
if start_token > end_token: | |
return None | |
if start_token <= end_token: | |
start_idx, end_idx = offset_mapping[start_token][0], offset_mapping[end_token][1] | |
if start_idx is not None and end_idx is not None and start_idx < end_idx: | |
#st.write(f"Start_idx: {start_idx}, End_idx: {end_idx}") | |
return ( | |
original_text[:start_idx] | |
+ f"<mark style='background-color:{color}; padding:2px; border-radius:4px;'>" | |
+ original_text[start_idx:end_idx] | |
+ "</mark>" | |
+ original_text[end_idx:] | |
) | |
return original_text | |
cause_text1 = mark_text_by_position(input_text, start_cause1, end_cause1, "#FFD700") # yellow for cause | |
effect_text1 = mark_text_by_position(input_text, start_effect1, end_effect1, "#90EE90") # green for effect | |
if start_signal is not None and end_signal is not None: | |
signal_text = mark_text_by_position(input_text, start_signal, end_signal, "#FF6347") # red for signal | |
else: | |
signal_text = None | |
if beam_search: | |
cause_text2 = mark_text_by_position(input_text, start_cause2, end_cause2, "#FFD700") | |
effect_text2 = mark_text_by_position(input_text, start_effect2, end_effect2, "#90EE90") | |
else: | |
cause_text2 = None | |
effect_text2 = None | |
if beam_search: | |
start_cause_probs = torch.softmax(start_cause_logits, dim=-1) | |
end_cause_probs = torch.softmax(end_cause_logits, dim=-1) | |
start_effect_probs = torch.softmax(start_effect_logits, dim=-1) | |
end_effect_probs = torch.softmax(end_effect_logits, dim=-1) | |
best_start_cause_score = start_cause_probs[start_cause1].item() | |
best_end_cause_score = end_cause_probs[end_cause1].item() | |
best_start_effect_score = start_effect_probs[start_effect1].item() | |
best_end_effect_score = end_effect_probs[end_effect1].item() | |
second_start_cause_score = start_cause_probs[start_cause2].item() | |
second_end_cause_score = end_cause_probs[end_cause2].item() | |
second_start_effect_score = start_effect_probs[start_effect2].item() | |
second_end_effect_score = end_effect_probs[end_effect2].item() | |
best_scores = { | |
"Start Cause Score": round(best_start_cause_score, 4), | |
"End Cause Score": round(best_end_cause_score, 4), | |
"Start Effect Score": round(best_start_effect_score, 4), | |
"End Effect Score": round(best_end_effect_score, 4), | |
"Total Best Score [sum of log-probability scores]": round(score1, 4) | |
} | |
second_best_scores = { | |
"Start Cause Score": round(second_start_cause_score, 4), | |
"End Cause Score": round(second_end_cause_score, 4), | |
"Start Effect Score": round(second_start_effect_score, 4), | |
"End Effect Score": round(second_end_effect_score, 4), | |
"Total Second Best Score [sum of log-probability scores]": round(score2, 4) | |
} | |
top5_scores = sorted(topk_scores.items(), key=lambda x: x[1], reverse=True)[:5] | |
top5_scores = [(k, round(v, 4)) for k, v in top5_scores] | |
else: | |
best_scores = {} | |
second_best_scores = {} | |
top5_scores = {} | |
return cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores | |
st.title("Causal Relation Extraction") | |
input_text = st.text_area("Enter your text here:", height=100) | |
beam_search = st.radio("Enable Position Selector & Beam Search?", ('Yes', 'No')) == 'Yes' | |
if st.button("Extract"): | |
if input_text: | |
cause_text1, effect_text1, signal_text, cause_text2, effect_text2, best_scores, second_best_scores, top5_scores = extract_arguments(input_text, tokenizer, model, beam_search=beam_search) | |
# Display first relation | |
st.write("## Relation 1:") | |
if cause_text1 is None or effect_text1 is None: | |
st.write("The prediction is not correct for at least one span: The position of the predicted end token comes before the position of the start token.") | |
else: | |
st.markdown(f"**Cause:** {cause_text1}", unsafe_allow_html=True) | |
st.markdown(f"**Effect:** {effect_text1}", unsafe_allow_html=True) | |
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True) | |
if beam_search: | |
# Display dictionary in Streamlit | |
st.markdown(f"<strong>Best Tuple Scores:</strong>", unsafe_allow_html=True) | |
st.json(best_scores) | |
# Display second relation if beam search is enabled | |
st.write("## Relation 2:") | |
st.markdown(f"**Cause:** {cause_text2}", unsafe_allow_html=True) | |
st.markdown(f"**Effect:** {effect_text2}", unsafe_allow_html=True) | |
st.markdown(f"**Signal:** {signal_text}", unsafe_allow_html=True) | |
st.markdown(f"<strong>Second best Tuple Scores:</strong>", unsafe_allow_html=True) | |
st.json(second_best_scores) | |
st.markdown(f"<strong>top5_scores [sum of log-probability scores]:</strong>", unsafe_allow_html=True) | |
# Unpack top 5 scores | |
# first, second, third, fourth, fifth = top_5_scores | |
st.json(top5_scores) | |
else: | |
st.warning("Please enter some text before extracting.") |