A newer version of the Gradio SDK is available:
5.25.0
title: A Video Crossover Generator
emoji: π
colorFrom: green
colorTo: green
sdk: gradio
sdk_version: 5.9.1
app_file: app.py
pinned: false
license: gpl-3.0
short_description: made by movies
pip install transformers torch torchvision
import torch from transformers import VideoGPT, VideoProcessor
Load a pre-trained video generation model
model = VideoGPT.from_pretrained("huggingface/video-gpt") processor = VideoProcessor.from_pretrained("huggingface/video-gpt")
def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path)
# Generate a crossover video
with torch.no_grad():
crossover_video = model.generate(video1, video2)
# Save the generated video
crossover_video.save(output_path)
Example usage
generate_crossover_video("path/to/video1.mp4", "path/to/video2.mp4", "path/to/output_video.mp4")
import torch from transformers import VideoGPT, VideoProcessor from moviepy.editor import VideoFileClip, concatenate_videoclips
Load the model and processor
model = VideoGPT.from_pretrained("huggingface/video-gpt") processor = VideoProcessor.from_pretrained("huggingface/video-gpt")
def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path)
# Generate crossover video
with torch.no_grad():
crossover_video = model.generate(video1, video2)
# Save the generated video
crossover_video.save(output_path)
def combine_cars_videos(video1_path, video2_path, output_path):
clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
final_clip = concatenate_videoclips([clip1, clip2])
final_clip.write_videofile(output_path, codec="libx264")
# Example usage
generate_crossover_video("path/to/cars_video1.mp4", "path/to/cars_video2.mp4", "path/to/output_crossover_video.mp4") combine_cars_videos("path/to/cars_video1.mp4", "path/to/cars_video2.mp4", "path/to/final_output_video.mp4")
import torch from transformers import VideoGPT, VideoProcessor # Hypothetical models from moviepy.editor import VideoFileClip, concatenate_videoclips
Load the model and processor (hypothetical)
model = VideoGPT.from_pretrained("huggingface/video-gpt") processor = VideoProcessor.from_pretrained("huggingface/video-gpt")
def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path)
# Generate a crossover video
with torch.no_grad():
crossover_video = model.generate(video1, video2)
# Save the generated video
crossover_video.save(output_path)
def combine_bfdi_videos(video1_path, video2_path, output_path):
clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
final_clip = concatenate_videoclips([clip1, clip2])
final_clip.write_videofile(output_path, codec="libx264")
# Example usage
generate_crossover_video("path/to/bfd1_video.mp4", "path/to/bfb_video.mp4", "path/to/output_crossover_video.mp4") combine_bfdi_videos("path/to/bfdia_video.mp4", "path/to/tpot_video.mp4", "path/to/final_output_video.mp4")
import torch from transformers import VideoGPT, VideoProcessor # Note: These are hypothetical models from moviepy.editor import VideoFileClip, concatenate_videoclips
Load the model and processor
model = VideoGPT.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained model processor = VideoProcessor.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained processor
def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path)
# Generate a crossover video
with torch.no_grad():
crossover_video = model.generate(video1, video2)
# Save the generated video
crossover_video.save(output_path)
def combine_mario_videos(video1_path, video2_path, output_path):
clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
final_clip = concatenate_videoclips([clip1, clip2])
final_clip.write_videofile(output_path, codec="libx264")
# Example usage
generate_crossover_video("path/to/mario_video1.mp4", "path/to/mario_video2.mp4", "path/to/output_crossover_video.mp4") combine_mario_videos("path/to/mario_video1.mp4", "path/to/mario_video2.mp4", "path/to/final_output_video.mp4")
Load the model and processor
model = VideoGPT.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained model processor = VideoProcessor.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained processor
import torch from transformers import VideoGPT, VideoProcessor # Note: These are hypothetical models from moviepy.editor import VideoFileClip, concatenate_videoclips
def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path)
# Generate a crossover video
with torch.no_grad():
crossover_video = model.generate(video1, video2)
# Save the generated video
crossover_video.save(output_path)
def combine_minecraft_videos(video1_path, video2_path, output_path):
clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
final_clip = concatenate_videoclips([clip1, clip2])
final_clip.write_videofile(output_path, codec="libx264")
# Example usage
generate_crossover_video("path/to/minecraft_video1.mp4", "path/to/minecraft_video2.mp4", "path/to/output_crossover_video.mp4") combine_minecraft_videos("path/to/minecraft_video1.mp4", "path/to/minecraft_video2.mp4", "path/to/final_output_video.mp4")
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference