Spaces:
Running
on
Zero
Running
on
Zero
#==================================================================== | |
# https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer | |
#==================================================================== | |
""" | |
Orpheus Music Transformer Gradio App - Single Model, Simplified Version | |
SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs | |
Using one model which was trained for 3 full epochs" | |
""" | |
import os | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
import torch | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import spaces | |
from huggingface_hub import hf_hub_download | |
import TMIDIX | |
from midi_to_colab_audio import midi_to_colab_audio | |
from x_transformer_2_3_1 import TransformerWrapper, AutoregressiveWrapper, Decoder, top_p | |
import random | |
# ----------------------------- | |
# CONFIGURATION & GLOBALS | |
# ----------------------------- | |
SEP = '=' * 70 | |
PDT = timezone('US/Pacific') | |
MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_96332_steps_0.82_loss_0.748_acc.pth' | |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' | |
NUM_OUT_BATCHES = 10 | |
PREVIEW_LENGTH = 120 # in tokens | |
# ----------------------------- | |
# PRINT START-UP INFO | |
# ----------------------------- | |
def print_sep(): | |
print(SEP) | |
print_sep() | |
print("Orpheus Music Transformer Gradio App") | |
print_sep() | |
print("Loading modules...") | |
# ----------------------------- | |
# ENVIRONMENT & PyTorch Settings | |
# ----------------------------- | |
os.environ['USE_FLASH_ATTENTION'] = '1' | |
torch.set_float32_matmul_precision('high') | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
torch.backends.cuda.enable_mem_efficient_sdp(True) | |
torch.backends.cuda.enable_math_sdp(True) | |
torch.backends.cuda.enable_flash_sdp(True) | |
torch.backends.cuda.enable_cudnn_sdp(True) | |
print_sep() | |
print("PyTorch version:", torch.__version__) | |
print("Done loading modules!") | |
print_sep() | |
# ----------------------------- | |
# MODEL INITIALIZATION | |
# ----------------------------- | |
print_sep() | |
print("Instantiating model...") | |
device_type = 'cuda' | |
dtype = 'bfloat16' | |
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
SEQ_LEN = 8192 | |
PAD_IDX = 18819 | |
model = TransformerWrapper( | |
num_tokens=PAD_IDX + 1, | |
max_seq_len=SEQ_LEN, | |
attn_layers=Decoder( | |
dim=2048, | |
depth=8, | |
heads=32, | |
rotary_pos_emb=True, | |
attn_flash=True | |
) | |
) | |
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) | |
print_sep() | |
print("Loading model checkpoint...") | |
checkpoint = hf_hub_download( | |
repo_id='asigalov61/Orpheus-Music-Transformer', | |
filename=MODEL_CHECKPOINT | |
) | |
model.load_state_dict(torch.load(checkpoint, map_location='cuda', weights_only=True)) | |
model = torch.compile(model, mode='max-autotune') | |
print_sep() | |
print("Done!") | |
print("Model will use", dtype, "precision...") | |
print_sep() | |
model.cuda() | |
model.eval() | |
# ----------------------------- | |
# HELPER FUNCTIONS | |
# ----------------------------- | |
def render_midi_output(final_composition): | |
"""Generate MIDI score, plot, and audio from final composition.""" | |
fname, midi_score = save_midi(final_composition) | |
time_val = midi_score[-1][1] / 1000 # seconds marker from last note | |
midi_plot = TMIDIX.plot_ms_SONG( | |
midi_score, | |
plot_title='Orpheus Music Transformer Composition', | |
block_lines_times_list=[], | |
return_plt=True | |
) | |
midi_audio = midi_to_colab_audio( | |
fname + '.mid', | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
output_for_gradio=True | |
) | |
return (16000, midi_audio), midi_plot, fname + '.mid', time_val | |
# ----------------------------- | |
# MIDI PROCESSING FUNCTIONS | |
# ----------------------------- | |
def load_midi(input_midi): | |
"""Process the input MIDI file and create a token sequence.""" | |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) | |
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True) | |
if escore_notes: | |
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True) | |
dscore = TMIDIX.delta_score_notes(escore_notes) | |
dcscore = TMIDIX.chordify_score([d[1:] for d in dscore]) | |
melody_chords = [18816] | |
#======================================================= | |
# MAIN PROCESSING CYCLE | |
#======================================================= | |
for i, c in enumerate(dcscore): | |
delta_time = c[0][0] | |
melody_chords.append(delta_time) | |
for e in c: | |
#======================================================= | |
# Durations | |
dur = max(1, min(255, e[1])) | |
# Patches | |
pat = max(0, min(128, e[5])) | |
# Pitches | |
ptc = max(1, min(127, e[3])) | |
# Velocities | |
# Calculating octo-velocity | |
vel = max(8, min(127, e[4])) | |
velocity = round(vel / 15)-1 | |
#======================================================= | |
# FINAL NOTE SEQ | |
#======================================================= | |
# Writing final note | |
pat_ptc = (128 * pat) + ptc | |
dur_vel = (8 * dur) + velocity | |
melody_chords.extend([pat_ptc+256, dur_vel+16768]) | |
return melody_chords | |
else: | |
return [18816] | |
def save_midi(tokens): | |
"""Convert token sequence back to a MIDI score and write it using TMIDIX. | |
""" | |
time = 0 | |
dur = 1 | |
vel = 90 | |
pitch = 60 | |
channel = 0 | |
patch = 0 | |
patches = [-1] * 16 | |
channels = [0] * 16 | |
channels[9] = 1 | |
song_f = [] | |
for ss in tokens: | |
if 0 <= ss < 256: | |
time += ss * 16 | |
if 256 <= ss < 16768: | |
patch = (ss-256) // 128 | |
if patch < 128: | |
if patch not in patches: | |
if 0 in channels: | |
cha = channels.index(0) | |
channels[cha] = 1 | |
else: | |
cha = 15 | |
patches[cha] = patch | |
channel = patches.index(patch) | |
else: | |
channel = patches.index(patch) | |
if patch == 128: | |
channel = 9 | |
pitch = (ss-256) % 128 | |
if 16768 <= ss < 18816: | |
dur = ((ss-16768) // 8) * 16 | |
vel = (((ss-16768) % 8)+1) * 15 | |
song_f.append(['note', time, dur, channel, pitch, vel, patch]) | |
patches = [0 if x==-1 else x for x in patches] | |
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) | |
# Generate a time stamp using the PDT timezone. | |
timestamp = datetime.datetime.now(PDT).strftime("%Y%m%d_%H%M%S") | |
fname = f"Orpheus-Music-Transformer-Composition" | |
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( | |
output_score, | |
output_signature='Orpheus Music Transformer', | |
output_file_name=fname, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches, | |
verbose=False | |
) | |
return fname, output_score | |
# ----------------------------- | |
# MUSIC GENERATION FUNCTION (Combined) | |
# ----------------------------- | |
def generate_music(prime, num_gen_tokens, num_gen_batches, model_temperature, model_top_p): | |
"""Generate music tokens given prime tokens and parameters.""" | |
if len(prime) >= 7168: | |
prime = [18816] + prime[-7168:] | |
inputs = prime if prime else [18816] | |
print("Generating...") | |
inp = torch.LongTensor([inputs] * num_gen_batches).cuda() | |
with ctx: | |
out = model.generate( | |
inp, | |
num_gen_tokens, | |
filter_logits_fn=top_p, | |
filter_kwargs={'thres': model_top_p}, | |
temperature=model_temperature, | |
eos_token=18818, | |
return_prime=False, | |
verbose=False | |
) | |
print("Done!") | |
print_sep() | |
return out.tolist() | |
def generate_music_and_state(input_midi, num_prime_tokens, num_gen_tokens, | |
model_temperature, model_top_p, add_drums, add_outro, final_composition, generated_batches, block_lines): | |
""" | |
Generate tokens using the model, update the composition state, and prepare outputs. | |
This function combines seed loading, token generation, and UI output packaging. | |
""" | |
print_sep() | |
print("Request start time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) | |
start_time = reqtime.time() | |
print_sep() | |
if input_midi is not None: | |
fn = os.path.basename(input_midi.name) | |
fn1 = fn.split('.')[0] | |
print('Input file name:', fn) | |
print('Num prime tokens:', num_prime_tokens) | |
print('Num gen tokens:', num_gen_tokens) | |
print('Model temp:', model_temperature) | |
print('Model top p:', model_top_p) | |
print('Add drums:', add_drums) | |
print('Add outro:', add_outro) | |
print_sep() | |
# Load seed from MIDI if there is no existing composition. | |
if not final_composition and input_midi is not None: | |
final_composition = load_midi(input_midi) | |
if num_prime_tokens < 7168: | |
final_composition = final_composition[:num_prime_tokens] | |
midi_fname, midi_score = save_midi(final_composition) | |
# Use the last note's time as a marker. | |
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) | |
if final_composition: | |
if add_outro: | |
final_composition.append(18817) # Outro token | |
if add_drums: | |
drum_pitch = random.choice([36, 38]) | |
final_composition.extend([(128*128)+drum_pitch+256]) # Drum token | |
print_sep() | |
print('Composition has', len(final_composition), 'tokens') | |
print_sep() | |
batched_gen_tokens = generate_music(final_composition, num_gen_tokens, | |
NUM_OUT_BATCHES, model_temperature, model_top_p) | |
output_batches = [] | |
for i, tokens in enumerate(batched_gen_tokens): | |
preview_tokens = final_composition[-PREVIEW_LENGTH:] | |
midi_fname, midi_score = save_midi(preview_tokens + tokens) | |
plot_kwargs = {'plot_title': f'Batch # {i}', 'return_plt': True} | |
if len(final_composition) > PREVIEW_LENGTH: | |
plot_kwargs['preview_length_in_notes'] = len([t for t in preview_tokens if 256 <= t < 16768]) | |
midi_plot = TMIDIX.plot_ms_SONG(midi_score, **plot_kwargs) | |
midi_audio = midi_to_colab_audio(midi_fname + '.mid', | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
output_for_gradio=True) | |
output_batches.append([(16000, midi_audio), midi_plot, tokens]) | |
# Update generated_batches (for use by add/remove functions) | |
generated_batches = batched_gen_tokens | |
# Flatten outputs: states then audio and plots for each batch. | |
outputs_flat = [] | |
for batch in output_batches: | |
outputs_flat.extend([batch[0], batch[1]]) | |
print("Request end time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) | |
print_sep() | |
end_time = reqtime.time() | |
execution_time = end_time - start_time | |
print(f"Request execution time: {execution_time} seconds") | |
print_sep() | |
return [final_composition, generated_batches, block_lines] + outputs_flat | |
# ----------------------------- | |
# BATCH HANDLING FUNCTIONS | |
# ----------------------------- | |
def add_batch(batch_number, final_composition, generated_batches, block_lines): | |
"""Add tokens from the specified batch to the final composition and update outputs.""" | |
if generated_batches: | |
final_composition.extend(generated_batches[batch_number]) | |
midi_fname, midi_score = save_midi(final_composition) | |
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) | |
midi_plot = TMIDIX.plot_ms_SONG( | |
midi_score, | |
plot_title='Orpheus Music Transformer Composition', | |
block_lines_times_list=block_lines[:-1], | |
return_plt=True | |
) | |
midi_audio = midi_to_colab_audio(midi_fname + '.mid', | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
output_for_gradio=True) | |
print("Added batch #", batch_number) | |
print_sep() | |
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines | |
else: | |
return None, None, None, [], [], [] | |
def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines): | |
"""Remove tokens from the final composition and update outputs.""" | |
if final_composition and len(final_composition) > num_tokens: | |
final_composition = final_composition[:-num_tokens] | |
if block_lines: | |
block_lines.pop() | |
midi_fname, midi_score = save_midi(final_composition) | |
midi_plot = TMIDIX.plot_ms_SONG( | |
midi_score, | |
plot_title='Orpheus Music Transformer Composition', | |
block_lines_times_list=block_lines[:-1], | |
return_plt=True | |
) | |
midi_audio = midi_to_colab_audio(midi_fname + '.mid', | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
output_for_gradio=True) | |
print("Removed batch #", batch_number) | |
print_sep() | |
return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines | |
else: | |
return None, None, None, [], [], [] | |
def clear(): | |
"""Clear outputs and reset state.""" | |
print_sep() | |
print('Clear batch...') | |
print_sep() | |
return None, None, None, [], [] | |
def reset(final_composition=[], generated_batches=[], block_lines=[]): | |
"""Reset composition state.""" | |
print_sep() | |
print('Reset MIDI...') | |
print_sep() | |
return [], [], [] | |
# ----------------------------- | |
# GRADIO INTERFACE SETUP | |
# ----------------------------- | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Music Transformer</h1>") | |
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs</h1>") | |
gr.HTML(""" | |
Check out <a href="https://huggingface.co/datasets/projectlosangeles/Godzilla-MIDI-Dataset">Godzilla MIDI Dataset</a> on Hugging Face | |
<p> | |
<a href="https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> | |
</a> | |
</p> | |
for faster execution and endless generation! | |
""") | |
gr.HTML(""" | |
<iframe width="100%" height="300" scrolling="no" frameborder="no" allow="autoplay" src="https://w.soundcloud.com/player/?url=https%3A//api.soundcloud.com/playlists/2042253855&color=%23ff5500&auto_play=false&hide_related=false&show_comments=true&show_user=true&show_reposts=false&show_teaser=true&visual=true"></iframe><div style="font-size: 10px; color: #cccccc;line-break: anywhere;word-break: normal;overflow: hidden;white-space: nowrap;text-overflow: ellipsis; font-family: Interstate,Lucida Grande,Lucida Sans Unicode,Lucida Sans,Garuda,Verdana,Tahoma,sans-serif;font-weight: 100;"><a href="https://soundcloud.com/aleksandr-sigalov-61" title="Project Los Angeles" target="_blank" style="color: #cccccc; text-decoration: none;">Project Los Angeles</a> · <a href="https://soundcloud.com/aleksandr-sigalov-61/sets/orpheus-music-transformer" title="Orpheus Music Transformer" target="_blank" style="color: #cccccc; text-decoration: none;">Orpheus Music Transformer</a></div> | |
""") | |
gr.Markdown("## Key Features") | |
gr.Markdown(""" | |
- **Efficient Architecture with RoPE**: Compact and very fast 479M full attention autoregressive transformer with RoPE. | |
- **Extended Sequence Length**: 8k tokens that comfortably fit most music compositions and facilitate long-term music structure generation. | |
- **Premium Training Data**: Trained solely on the highest-quality MIDIs from the Godzilla MIDI dataset. | |
- **Optimized MIDI Encoding**: Extremely efficient MIDI representation using only 3 tokens per note and 7 tokens per tri-chord. | |
- **Distinct Encoding Order**: Features a unique duration/velocity last MIDI encoding order for refined musical expression. | |
- **Full-Range Instrumental Learning**: True full-range MIDI instruments encoding enabling the model to learn each instrument separately. | |
- **Natural Composition Endings**: Outro tokens that help generate smooth and natural musical conclusions. | |
""") | |
gr.Markdown( | |
""" | |
## If you enjoyed Orpheus Music Transformer, please star and duplicate. It helps a lot! 🤗 | |
### [⭐ Star this Space](https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer) | |
### [🔁 Duplicate this Space](https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer?duplicate=true) | |
### [⭐ Star models repo](https://huggingface.co/asigalov61/Orpheus-Music-Transformer) | |
""" | |
) | |
# Global state variables for composition | |
final_composition = gr.State([]) | |
generated_batches = gr.State([]) | |
block_lines = gr.State([]) | |
gr.Markdown("## Upload seed MIDI or click 'Generate' for random output") | |
gr.Markdown("### PLEASE NOTE:") | |
gr.Markdown("* Orpheus Music Transformer is a primarily music continuation/co-composition model!") | |
gr.Markdown("* The model works best if given some music context to work with") | |
gr.Markdown("* Random generation from SOS token/embeddings may not always produce good results") | |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) | |
input_midi.upload(reset, [final_composition, generated_batches, block_lines], | |
[final_composition, generated_batches, block_lines]) | |
gr.Markdown("## Generate") | |
num_prime_tokens = gr.Slider(16, 7168, value=7168, step=1, label="Number of prime tokens") | |
num_gen_tokens = gr.Slider(16, 1024, value=512, step=1, label="Number of tokens to generate") | |
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") | |
model_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value") | |
add_drums = gr.Checkbox(value=False, label="Add drums") | |
add_outro = gr.Checkbox(value=False, label="Add an outro") | |
generate_btn = gr.Button("Generate", variant="primary") | |
gr.Markdown("## Batch Previews") | |
outputs = [final_composition, generated_batches, block_lines] | |
# Two outputs (audio and plot) for each batch | |
for i in range(NUM_OUT_BATCHES): | |
with gr.Tab(f"Batch # {i}"): | |
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3") | |
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot") | |
outputs.extend([audio_output, plot_output]) | |
generate_btn.click( | |
generate_music_and_state, | |
[input_midi, num_prime_tokens, num_gen_tokens, model_temperature, model_top_p, add_drums, add_outro, | |
final_composition, generated_batches, block_lines], | |
outputs | |
) | |
gr.Markdown("## Add/Remove Batch") | |
batch_number = gr.Slider(0, NUM_OUT_BATCHES - 1, value=0, step=1, label="Batch number to add/remove") | |
add_btn = gr.Button("Add batch", variant="primary") | |
remove_btn = gr.Button("Remove batch", variant="stop") | |
clear_btn = gr.ClearButton() | |
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3") | |
final_plot_output = gr.Plot(label="Final MIDI plot") | |
final_file_output = gr.File(label="Final MIDI file") | |
add_btn.click( | |
add_batch, | |
[batch_number, final_composition, generated_batches, block_lines], | |
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] | |
) | |
remove_btn.click( | |
remove_batch, | |
[batch_number, num_gen_tokens, final_composition, generated_batches, block_lines], | |
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] | |
) | |
clear_btn.click(clear, inputs=None, | |
outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines]) | |
demo.launch() |