audioqna / app.py
avfranco's picture
Update app.py
5195d28 verified
raw
history blame
2.4 kB
import os
import spaces
import torch
import gradio as gr
import openai
from transformers import pipeline
MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
@spaces.GPU
def respond_to_question(transcript, question):
# Optionally, use OpenAI API to generate a response to the user's question
# based on the transcript
response = ""
# Replace this with your OpenAI API key
openai.api_key = os.environ["OPENAI_API_KEY"]
response = openai.Completion.create(
engine="gpt-4o-mini",
prompt=f"Transcript: {transcript}\n\nUser: {question}\n\nAI:",
temperature=0.3,
max_tokens=60,
top_p=1,
frequency_penalty=0,
presence_penalty=0
).choices[0].text
return response
@spaces.GPU
def audio_transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"]
return text
with gr.Blocks() as transcriberUI:
gr.Markdown(
"""
# Ola!
Clique no botao abaixo para selecionar o Audio que deseja conversar!
Ambiente disponivel 24x7. Running on ZeroGPU with openai/whisper-large-v3
"""
)
inp = gr.File(label="Arquivo de Audio", show_label=True, type="filepath", file_count="single", file_types=["mp3"])
transcribe = gr.Textbox(label="Transcricao", show_label=True, show_copy_button=True)
ask_question = gr.Textbox(label="Ask a question", visible=True)
response_output = gr.Textbox(label="Response", visible=True)
submit_question = gr.Button("Submit question", visible=True)
def ask_question_callback(transcription,question):
if ask_question:
response = respond_to_question(transcription, question)
response_output.value = response
else:
response_output.value = "No question asked"
return response_output
inp.upload(audio_transcribe, inputs=inp, outputs=transcribe)
submit_question.click(ask_question_callback, outputs=[response_output], inputs=[transcribe, ask_question])
transcriberUI.queue().launch()