File size: 14,568 Bytes
0321f34
0998e6d
8ab9329
0998e6d
 
da9c0a0
5da6a2b
0998e6d
 
 
 
0321f34
e0db39e
0946447
0998e6d
da9c0a0
0998e6d
 
ce366f7
0998e6d
 
ce366f7
 
 
 
 
 
8ab9329
ce366f7
 
 
8ab9329
0998e6d
 
 
8ab9329
 
 
 
 
0998e6d
8ab9329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0998e6d
 
 
8ab9329
 
 
 
0998e6d
8ab9329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce366f7
0998e6d
 
8ab9329
ce366f7
0998e6d
 
 
 
 
 
8ab9329
 
ce366f7
0321f34
e0db39e
8ab9329
 
0998e6d
 
ce366f7
0998e6d
 
 
 
 
 
ce366f7
8ab9329
0998e6d
0946447
5da6a2b
0998e6d
8ab9329
 
 
 
 
0946447
ce366f7
 
8ab9329
 
0946447
e0db39e
ce366f7
0946447
ce366f7
 
8ab9329
 
e0db39e
 
 
ce366f7
eee0fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce366f7
eee0fd3
 
 
 
 
 
 
 
 
ce366f7
eee0fd3
 
 
 
 
 
 
 
ce366f7
eee0fd3
 
 
ce366f7
eee0fd3
 
 
 
 
 
e0db39e
eee0fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0db39e
a365da6
ce366f7
0998e6d
 
 
5da6a2b
7192c24
 
0998e6d
 
 
 
 
 
7192c24
 
 
0998e6d
 
 
 
 
7192c24
 
 
 
5da6a2b
38ba037
ce366f7
0998e6d
38ba037
 
ce366f7
0998e6d
 
 
 
 
 
ce366f7
 
 
 
 
 
 
0998e6d
 
 
 
 
ce366f7
 
 
0321f34
38ba037
 
 
da9c0a0
6fc6046
5da6a2b
6d2d9db
 
 
 
 
5da6a2b
 
da9c0a0
1869ec4
ce366f7
 
 
 
 
 
 
 
da9c0a0
ce366f7
 
da9c0a0
e0a1479
 
 
 
 
 
 
 
 
 
 
 
ce366f7
 
7192c24
 
 
 
 
da9c0a0
e0db39e
 
0321f34
ce366f7
38ba037
ce366f7
 
6fc6046
5da6a2b
38ba037
 
ce366f7
5da6a2b
da9c0a0
7192c24
 
 
0998e6d
 
 
7192c24
ce366f7
 
 
 
 
 
5da6a2b
8ab9329
0946447
5da6a2b
8ab9329
 
ce366f7
 
 
 
8ab9329
 
ce366f7
 
 
 
 
 
 
 
 
 
 
0998e6d
ce366f7
 
 
 
 
 
 
 
 
 
 
 
 
e0db39e
ce366f7
 
 
e0db39e
 
 
ce366f7
 
e0db39e
38ba037
5da6a2b
e0a1479
ce366f7
 
 
 
 
 
 
 
6fc6046
 
ce366f7
0998e6d
 
 
 
 
 
ce366f7
8ab9329
da9c0a0
 
ce366f7
 
8ab9329
ce366f7
 
 
 
 
 
 
 
 
 
 
 
0998e6d
ce366f7
 
 
 
 
 
 
 
 
0321f34
e0db39e
 
0321f34
 
7192c24
38ba037
da9c0a0
ce366f7
 
 
7192c24
ce366f7
 
 
8ab9329
 
 
ce366f7
 
8ab9329
 
ce366f7
 
 
8ab9329
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import json
import os
import timeit
from datetime import date

import gradio as gr
import pandas as pd
from avidtools.datamodels.components import *
from avidtools.datamodels.enums import *
from avidtools.datamodels.report import Report
from datasets import load_dataset as hf_load_dataset

from scripts.genbit import *
from scripts.gender_distribution import *
from scripts.gender_profession_bias import *

SAMPLING_SIZE_THRESHOLD = 2000
METHODOLOGIES = json.load(open("config/methodologies.json", "r"))

EVALUATION = {
    "dataset_id": None,
    "source": None,
    "df": None,
    "sampling_method": None,
    "sampling_size": None,
    "column": None,
    "methodology": None,
    "result_df": None,
}


def generate_avid_report():
    dataset_id = EVALUATION["dataset_id"]
    methodology = EVALUATION["methodology"]
    result_json = EVALUATION["result_df"].to_dict(orient="list")

    report = Report()

    report.affects = Affects(
        developer=[],
        deployer=["Hugging Face"] if EVALUATION["source"] == "HuggingFace Hub" else [],
        artifacts=[Artifact(type=ArtifactTypeEnum.dataset, name=dataset_id)],
    )
    report.problemtype = Problemtype(
        classof=ClassEnum.na,
        type=TypeEnum.detection,
        description=LangValue(
            lang="eng", value="Dataset Bias Detection using BiasAware"
        ),
    )
    report.metrics = [
        Metric(
            name=methodology,
            detection_method=Detection(type=MethodEnum.test, name=methodology),
            results=result_json,
        )
    ]
    report.references = (
        [
            Reference(
                type="",
                label="""{dataset_id} on Hugging Face""".format(dataset_id=dataset_id),
                url="""https://huggingface.co/datasets/{dataset_id}""".format(
                    dataset_id=dataset_id
                ),
            )
        ]
        if EVALUATION["source"] == "HuggingFace Hub"
        else []
    )
    report.description = LangValue(
        lang="eng", value=METHODOLOGIES[methodology]["short_description"]
    )
    report.impact = Impact(
        avid=AvidTaxonomy(
            vuln_id="",
            risk_domain=["Ethics"],
            sep_view=[SepEnum.E0101],
            lifecycle_view=[LifecycleEnum.L03],
            taxonomy_version="0.2",
        )
    )
    report.reported_date = date.today()

    return gr.JSON(value=report.model_dump(), visible=True)


def evaluate():
    if EVALUATION["methodology"] == "GenBiT (Microsoft Gender Bias Tool)":
        EVALUATION["sampling_size"] = min(EVALUATION["sampling_size"], 100)

    print(
        f"Dataset          : {EVALUATION['dataset_id']}\n"
        f"Source           : {EVALUATION['source']}\n"
        f"Sampling Method  : {EVALUATION['sampling_method']}\n"
        f"Sampling Size    : {EVALUATION['sampling_size']}\n"
        f"Column           : {EVALUATION['column']}\n"
        f"Methodology      : {EVALUATION['methodology']}\n"
        f"Time Taken       : ",
        end="",
    )

    try:
        start = timeit.default_timer()

        data = EVALUATION["df"].copy()
        data = data[[EVALUATION["column"]]]

        if EVALUATION["sampling_method"] == "First":
            data = data.head(EVALUATION["sampling_size"])
        elif EVALUATION["sampling_method"] == "Last":
            data = data.tail(EVALUATION["sampling_size"])
        elif EVALUATION["sampling_method"] == "Random":
            data = data.sample(n=EVALUATION["sampling_size"], random_state=42)

        result_df, result_plot = globals()[
            METHODOLOGIES.get(EVALUATION["methodology"]).get("fx")
        ](data)

        EVALUATION["result_df"] = result_df

        stop = timeit.default_timer()

        print(f"{stop - start:.2f} seconds")

        return (
            gr.Plot(result_plot, visible=True),
            gr.Dataframe(result_df, visible=True),
            gr.Button(visible=True, interactive=True),
            gr.JSON(visible=True),
        )
    except Exception as e:
        print(e)
        return (
            gr.Plot(visible=False),
            gr.Dataframe(visible=False),
            gr.Button(visible=False),
            gr.JSON(visible=False),
        )


def load_dataset(local_dataset, hf_dataset):
    try:
        if local_dataset:
            EVALUATION["dataset_id"] = os.path.splitext(
                os.path.basename(local_dataset.name)
            )[0]
            EVALUATION["source"] = "Local Dataset"
            EVALUATION["df"] = pd.read_csv(local_dataset.name)
        else:
            EVALUATION["dataset_id"] = hf_dataset
            EVALUATION["source"] = "HuggingFace Hub"
            EVALUATION["df"] = hf_load_dataset(
                hf_dataset, split="train[0:100]"
            ).to_pandas()

        columns = EVALUATION["df"].select_dtypes(include=["object"]).columns.tolist()
        column_corpus = EVALUATION["df"][columns[0]].tolist()[:5]

        dataset_sampling_method = gr.Radio(
            label="Scope",
            info="Determines the scope of the dataset to be analyzed",
            choices=["First", "Last", "Random"],
            value="First",
            visible=True,
            interactive=True,
        )

        dataset_sampling_size = gr.Slider(
            label=f"Number of Entries",
            info=f"Determines the number of entries to be analyzed. Due to computational constraints, the maximum number of entries that can be analyzed is {SAMPLING_SIZE_THRESHOLD}.",
            minimum=1,
            maximum=min(EVALUATION["df"].shape[0], SAMPLING_SIZE_THRESHOLD),
            value=min(EVALUATION["df"].shape[0], SAMPLING_SIZE_THRESHOLD),
            visible=True,
            interactive=True,
        )

        dataset_column = gr.Radio(
            label="Column",
            info="Determines the column to be analyzed. These are the columns with text data.",
            choices=columns,
            value=columns[0],
            visible=True,
            interactive=True,
        )

        dataset_column_corpus = gr.Dataframe(
            value=pd.DataFrame({f"{columns[0]}": column_corpus}), visible=True
        )

        dataset_import_btn = gr.Button(
            value="Import Dataset",
            interactive=True,
            variant="primary",
            visible=True,
        )

        return (
            dataset_sampling_method,
            dataset_sampling_size,
            dataset_column,
            dataset_column_corpus,
            dataset_import_btn,
        )

    except FileNotFoundError as e:
        print(f"FileNotFoundError: {e}")
        return (
            gr.Radio(visible=False),
            gr.Slider(visible=False),
            gr.Radio(visible=False),
            gr.Dataframe(visible=False),
            gr.Button(visible=False),
        )


def import_dataset(dataset_sampling_method, dataset_sampling_size, dataset_column):
    EVALUATION["sampling_method"] = dataset_sampling_method
    EVALUATION["sampling_size"] = dataset_sampling_size
    EVALUATION["column"] = dataset_column

    return (
        gr.Markdown(
            "## Results (Dataset: {}{}) (Methodology: {}{})".format(
                "\u2705" if EVALUATION["dataset_id"] else "\u274E",
                "",
                "\u2705" if EVALUATION["methodology"] else "\u274E",
                "",
            )
        ),
        gr.Button(
            value="Evaluate",
            interactive=(
                True
                if EVALUATION["dataset_id"] and EVALUATION["methodology"]
                else False
            ),
            variant="primary",
            visible=True,
        ),
    )


def import_methodology(methodology):
    EVALUATION["methodology"] = methodology

    return (
        gr.Markdown(
            "## Results (Dataset: {}{}) (Methodology: {}{})".format(
                "\u2705" if EVALUATION["dataset_id"] else "\u274E",
                "",
                "\u2705" if EVALUATION["methodology"] else "\u274E",
                "",
            )
        ),
        gr.Markdown(
            METHODOLOGIES[methodology]["description"],
            visible=True,
        ),
        gr.Button(
            value="Evaluate",
            interactive=(
                True
                if EVALUATION["dataset_id"] and EVALUATION["methodology"]
                else False
            ),
            variant="primary",
            visible=True,
        ),
    )


BiasAware = gr.Blocks(title="BiasAware: Dataset Bias Detection")

with BiasAware:
    gr.Markdown(
        """
        # BiasAware: Dataset Bias Detection
        
        BiasAware is a specialized tool for detecting and quantifying biases within datasets used for Natural Language Processing (NLP) tasks. NLP training datasets frequently mirror the inherent biases of their source materials, resulting in AI models that unintentionally perpetuate stereotypes, exhibit underrepresentation, and showcase skewed perspectives.
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            dataset_title = gr.Markdown("## Dataset")

            dataset_import_type = gr.Radio(
                label="Import Type",
                info="Determines the mode of importing the dataset",
                choices=["Local Dataset", "HuggingFace Hub"],
                value="Local Dataset",
            )

            local_dataset = gr.File(
                label="Dataset", file_types=["csv"], value=None, visible=True
            )
            local_dataset_examples = gr.Examples(
                examples=[
                    os.path.join(os.path.dirname(__file__), "data", filename)
                    for filename in os.listdir(
                        os.path.join(os.path.dirname(__file__), "data")
                    )
                    if filename.endswith(".csv")
                ],
                inputs=local_dataset,
                label="Local Examples",
            )

            hf_dataset = gr.Textbox(visible=False)

            with gr.Row():
                with gr.Column(scale=1):
                    dataset_load_btn = gr.Button(visible=False)
                with gr.Column(scale=1):
                    dataset_import_btn = gr.Button(visible=False)

            dataset_sampling_method = gr.Radio(visible=False)
            dataset_sampling_size = gr.Slider(visible=False)
            dataset_column = gr.Radio(visible=False)
            dataset_column_corpus = gr.Dataframe(visible=False)

        with gr.Column(scale=2):
            methodology_title = gr.Markdown("## Methodology")

            methodology = gr.Radio(
                label="Methodology",
                info="Determines the methodology to be used for bias detection",
                choices=METHODOLOGIES.keys(),
            )

            methodology_description = gr.Markdown(visible=False)

        with gr.Column(scale=2):
            result_title = gr.Markdown(
                "## Results (Dataset: \u274E) (Methodology: \u274E)"
            )

            evaluation_btn = gr.Button(
                value="Evaluate",
                interactive=False,
                variant="primary",
                visible=True,
            )

            result_plot = gr.Plot(show_label=False, container=False)
            result_df = gr.DataFrame(visible=False)

            generate_avid_report_btn = gr.Button(
                value="Generate AVID Report",
                interactive=False,
                variant="primary",
            )

            avid_report = gr.JSON(label="AVID Report", visible=False)

    #
    #    Event Handlers
    #
    dataset_import_type.input(
        fn=lambda import_type: (
            gr.File(label="Dataset", file_types=["csv"], value=None, visible=True)
            if import_type == "Local Dataset"
            else gr.Textbox(visible=False),
            gr.Textbox(
                label="HuggingFace Hub",
                placeholder="Search for a dataset",
                value="imdb",
                interactive=True,
                visible=True,
            )
            if import_type == "HuggingFace Hub"
            else gr.File(value=None, visible=False),
            gr.Button(visible=False),
            gr.Radio(visible=False),
            gr.Slider(visible=False),
            gr.Radio(visible=False),
            gr.Dataframe(visible=False),
            gr.Button(visible=False),
        ),
        inputs=[dataset_import_type],
        outputs=[
            local_dataset,
            hf_dataset,
            dataset_load_btn,
            dataset_sampling_method,
            dataset_sampling_size,
            dataset_column,
            dataset_column_corpus,
            dataset_import_btn,
        ],
    )

    local_dataset.change(
        fn=lambda _: gr.Button(
            value=f"Load",
            interactive=True,
            variant="secondary",
            visible=True,
        ),
        inputs=[local_dataset],
        outputs=[dataset_load_btn],
    )

    hf_dataset.submit(
        fn=lambda _: gr.Button(
            value=f"Load",
            interactive=True,
            variant="secondary",
            visible=True,
        ),
        inputs=[hf_dataset],
        outputs=[dataset_load_btn],
    )

    dataset_load_btn.click(
        fn=load_dataset,
        inputs=[local_dataset, hf_dataset],
        outputs=[
            dataset_sampling_method,
            dataset_sampling_size,
            dataset_column,
            dataset_column_corpus,
            dataset_import_btn,
        ],
    )

    dataset_column.input(
        fn=lambda column: gr.Dataframe(
            value=pd.DataFrame(
                {f"{column}": EVALUATION["df"][column].tolist()[:5]},
            ),
            visible=True,
        ),
        inputs=[dataset_column],
        outputs=[dataset_column_corpus],
    )

    dataset_import_btn.click(
        fn=import_dataset,
        inputs=[
            dataset_sampling_method,
            dataset_sampling_size,
            dataset_column,
        ],
        outputs=[result_title, evaluation_btn],
    )

    methodology.input(
        fn=import_methodology,
        inputs=[methodology],
        outputs=[result_title, methodology_description, evaluation_btn],
    )

    evaluation_btn.click(
        fn=evaluate,
        inputs=None,
        outputs=[result_plot, result_df, generate_avid_report_btn, avid_report],
    )

    generate_avid_report_btn.click(
        fn=generate_avid_report, inputs=None, outputs=[avid_report]
    )


if __name__ == "__main__":
    BiasAware.launch()