File size: 3,705 Bytes
4d6e8c2
fe4a4cb
 
 
 
3b09640
adf940f
 
 
abfb090
fe4a4cb
4d6e8c2
fe4a4cb
4d6e8c2
3b09640
 
 
4d6e8c2
 
adf940f
1c33274
70f5f26
fe4a4cb
3b09640
1c33274
70f5f26
4d6e8c2
 
fe4a4cb
70f5f26
adf940f
70f5f26
4d6e8c2
fe4a4cb
4d6e8c2
fe4a4cb
 
 
 
 
 
 
3b09640
 
6cdb2cf
3b09640
fe4a4cb
 
 
6cdb2cf
fe4a4cb
 
 
 
 
 
 
 
 
 
adf940f
 
 
9976f01
 
adf940f
7379b0a
6cdb2cf
adf940f
 
9976f01
 
392e1fc
9976f01
 
6cdb2cf
 
9976f01
6cdb2cf
 
fe4a4cb
 
 
 
 
 
 
 
 
9976f01
fe4a4cb
 
 
 
4d6e8c2
 
fe4a4cb
70f5f26
fe4a4cb
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
fe4a4cb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
import librosa
import joblib
import numpy as np
import lightgbm

from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "LGBM Classifier Baseline on Mel-frequency cepstral coefficients"
ROUTE = "/audio"



@router.post(ROUTE, tags=["Audio Task"],
             description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
    """
    Evaluate audio classification for rainforest sound detection.
    
    Current Model: LGBM
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "chainsaw": 0,
        "environment": 1
    }
    # Load and prepare the dataset
    # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
    dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
    print('dataset loaded')
    
    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    print('train/test splitted')
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    def compute_mfcc(row, sr):
        audio_array = row['audio']['array']
        mfcc = librosa.feature.mfcc(y=audio_array, sr=sr, n_mfcc=5)
        return np.mean(mfcc, axis=1)

    def predict_new_audio(model, dataset, sr):
        list_mfcc = [compute_mfcc(row, sr) for row in dataset]
        print('mfcc computed')
        array_mfcc = np.vstack(list_mfcc)
        predictions = model.predict(array_mfcc)
        return predictions

    model_filename = "lightgbm_baseline_87_acc.pkl"
    clf = joblib.load(model_filename)

    print('model loaded')

    predictions = predict_new_audio(clf, test_dataset, 12000)

    print('predictions done')
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    true_labels = test_dataset["label"]
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results