Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,794 Bytes
3cbe462 57a1ea8 3cbe462 263adfe ac9fced 8228332 3cbe462 263adfe 8228332 263adfe ac9fced 3cbe462 813a7c3 3cbe462 ac9fced 3cbe462 8aa93ff 72e2bb4 57a1ea8 ac9fced 72e2bb4 ac9fced 72e2bb4 8228332 57a1ea8 ac9fced 8228332 ac9fced 263adfe 57a1ea8 263adfe 57a1ea8 ac9fced 215ae70 ac9fced 215ae70 ac9fced 215ae70 ac9fced 215ae70 ac9fced 73c62c4 215ae70 57a1ea8 215ae70 ac9fced 215ae70 57a1ea8 ac9fced 57a1ea8 215ae70 ac9fced 57a1ea8 ac9fced 215ae70 ac9fced 73c62c4 ac9fced 57a1ea8 3cbe462 57a1ea8 215ae70 3cbe462 57a1ea8 3cbe462 215ae70 57a1ea8 ac9fced 3cbe462 ac9fced 72e2bb4 ac9fced 62643c9 ac9fced 57a1ea8 ac9fced 57a1ea8 ac9fced 57a1ea8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from collections import defaultdict, Counter
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from PIL import Image
from openai import OpenAI
import asyncio
import edge_tts
from streamlit_marquee import streamlit_marquee
st.set_page_config(
page_title="๐ฒTalkingAIResearcher๐",
page_icon="๐ฒ๐",
layout="wide"
)
EDGE_TTS_VOICES = [
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-US-JennyNeural",
"en-GB-SoniaNeural"
]
FILE_EMOJIS = {
"md": "๐",
"mp3": "๐ต",
"wav": "๐",
"txt": "๐",
"pdf": "๐"
}
# Initialize session states
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = EDGE_TTS_VOICES[0]
if 'audio_format' not in st.session_state:
st.session_state['audio_format'] = 'mp3'
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
# API Setup
openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
claude_client = anthropic.Anthropic(api_key=os.getenv('ANTHROPIC_API_KEY'))
@st.cache_resource
def get_cached_audio_b64(file_path):
with open(file_path, "rb") as f:
return base64.b64encode(f.read()).decode()
def beautify_filename(filename):
name = os.path.splitext(filename)[0]
return name.replace('_', ' ').replace('.', ' ')
def create_zip_of_files(md_files, mp3_files, wav_files, query=''):
all_files = md_files + mp3_files + wav_files
if not all_files: return None
timestamp = datetime.now().strftime("%y%m_%H%M")
zip_name = f"{timestamp}_archive.zip"
with zipfile.ZipFile(zip_name, 'w') as z:
for f in all_files:
z.write(f)
return zip_name
def get_download_link(file_path, file_type="zip"):
with open(file_path, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
ext_map = {'zip': '๐ฆ', 'mp3': '๐ต', 'wav': '๐', 'md': '๐'}
emoji = ext_map.get(file_type, '')
return f'<a href="data:application/{file_type};base64,{b64}" download="{os.path.basename(file_path)}">{emoji} Download {os.path.basename(file_path)}</a>'
def load_files_for_sidebar():
files = [f for f in glob.glob("*.*") if not f.lower().endswith('readme.md')]
groups = defaultdict(list)
for f in files:
basename = os.path.basename(f)
group_name = basename[:9] if len(basename) >= 9 else 'Other'
groups[group_name].append(f)
return sorted(groups.items(),
key=lambda x: max(os.path.getmtime(f) for f in x[1]),
reverse=True)
def display_marquee_controls():
st.sidebar.markdown("### ๐ฏ Marquee Settings")
cols = st.sidebar.columns(2)
with cols[0]:
bg_color = st.color_picker("๐จ Background", "#1E1E1E")
text_color = st.color_picker("โ๏ธ Text", "#FFFFFF")
with cols[1]:
font_size = st.slider("๐ Size", 10, 24, 14)
duration = st.slider("โฑ๏ธ Speed", 1, 20, 10)
return {
"background": bg_color,
"color": text_color,
"font-size": f"{font_size}px",
"animationDuration": f"{duration}s",
"width": "100%",
"lineHeight": "35px"
}
def display_file_manager_sidebar(groups_sorted):
st.sidebar.title("๐ File Manager")
all_files = {'md': [], 'mp3': [], 'wav': []}
for _, files in groups_sorted:
for f in files:
ext = os.path.splitext(f)[1].lower().strip('.')
if ext in all_files:
all_files[ext].append(f)
cols = st.sidebar.columns(4)
for i, (ext, files) in enumerate(all_files.items()):
with cols[i]:
if st.button(f"๐๏ธ {ext.upper()}"):
[os.remove(f) for f in files]
st.session_state.should_rerun = True
if st.sidebar.button("๐ฆ Zip All"):
zip_name = create_zip_of_files(
all_files['md'], all_files['mp3'], all_files['wav']
)
if zip_name:
st.sidebar.markdown(get_download_link(zip_name), unsafe_allow_html=True)
for group_name, files in groups_sorted:
timestamp = (datetime.strptime(group_name, "%y%m_%H%M").strftime("%Y-%m-%d %H:%M")
if len(group_name) == 9 else group_name)
with st.sidebar.expander(f"๐ {timestamp} ({len(files)})", expanded=True):
c1, c2 = st.columns(2)
with c1:
if st.button("๐", key=f"view_{group_name}"):
st.session_state.viewing_prefix = group_name
with c2:
if st.button("๐๏ธ", key=f"del_{group_name}"):
[os.remove(f) for f in files]
st.session_state.should_rerun = True
for f in files:
ext = os.path.splitext(f)[1].lower().strip('.')
emoji = FILE_EMOJIS.get(ext, '๐')
pretty_name = beautify_filename(os.path.basename(f))
st.write(f"{emoji} **{pretty_name}**")
if ext in ['mp3', 'wav']:
st.audio(f)
if st.button("๐", key=f"loop_{f}"):
audio_b64 = get_cached_audio_b64(f)
st.components.v1.html(
f'''
<audio id="player_{f}" loop>
<source src="data:audio/{ext};base64,{audio_b64}">
</audio>
<script>
document.getElementById("player_{f}").play();
</script>
''',
height=0
)
async def edge_tts_generate(text, voice, file_format="mp3"):
text = re.sub(r'\s+', ' ', text).strip()
if not text: return None
communicate = edge_tts.Communicate(text, voice)
filename = f"{datetime.now().strftime('%y%m_%H%M')}_{voice}.{file_format}"
await communicate.save(filename)
return filename
def parse_arxiv_refs(text):
papers = []
current_paper = None
for line in text.split('\n'):
if '|' in line:
if current_paper:
papers.append(current_paper)
parts = line.strip('* ').split('|')
current_paper = {
'date': parts[0].strip(),
'title': parts[1].strip(),
'authors': '',
'summary': '',
'id': re.search(r'(\d{4}\.\d{5})', line).group(1) if re.search(r'(\d{4}\.\d{5})', line) else ''
}
elif current_paper:
if not current_paper['authors']:
current_paper['authors'] = line.strip('* ')
else:
current_paper['summary'] += ' ' + line.strip()
if current_paper:
papers.append(current_paper)
return papers
def perform_ai_lookup(query):
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response = client.predict(
query, 20, "Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)
papers = parse_arxiv_refs(response[0])
marquee_settings = display_marquee_controls()
for paper in papers:
content = f"๐ {paper['title']} | ๐ค {paper['authors']} | ๐ {paper['summary']}"
streamlit_marquee(
content=content,
**marquee_settings,
key=f"paper_{paper['id'] or random.randint(1000,9999)}"
)
st.write("") # Spacing
return papers
def main():
marquee_settings = display_marquee_controls()
streamlit_marquee(
content="๐ Welcome to TalkingAIResearcher | ๐ค Your Research Assistant",
**marquee_settings,
key="welcome"
)
tab = st.radio("Action:", ["๐ค Voice", "๐ ArXiv", "๐ Editor"], horizontal=True)
if tab == "๐ ArXiv":
query = st.text_input("๐ Search:")
if query:
papers = perform_ai_lookup(query)
st.write(f"Found {len(papers)} papers")
groups = load_files_for_sidebar()
display_file_manager_sidebar(groups)
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
# Condensed sidebar markdown
sidebar_md = """# ๐ Research Papers
## ๐ง AGI Levels
L0 โ No AI
L1 ๐ฑ ChatGPT/Bard [2303.08774v1](https://arxiv.org/abs/2303.08774) [PDF](https://arxiv.org/pdf/2303.08774.pdf)
L2 ๐ช Watson [2201.11903v1](https://arxiv.org/abs/2201.11903) [PDF](https://arxiv.org/pdf/2201.11903.pdf)
L3 ๐ฏ DALLยทE [2204.06125v1](https://arxiv.org/abs/2204.06125) [PDF](https://arxiv.org/pdf/2204.06125.pdf)
L4 ๐ AlphaGo [1712.01815v1](https://arxiv.org/abs/1712.01815) [PDF](https://arxiv.org/pdf/1712.01815.pdf)
L5 ๐ AlphaFold [2203.15556v1](https://arxiv.org/abs/2203.15556) [PDF](https://arxiv.org/pdf/2203.15556.pdf)
## ๐งฌ AlphaFold2
[2203.15556v1](https://arxiv.org/abs/2203.15556) [PDF](https://arxiv.org/pdf/2203.15556.pdf)
1. ๐งฌ Input Seq โ 2. ๐ DB Search โ 3. ๐งฉ MSA
4. ๐ Templates โ 5. ๐ Evoformer โ 6. ๐งฑ Structure
7. ๐ฏ 3D Predict โ 8. โป๏ธ Recycle x3"""
st.sidebar.markdown(sidebar_md)
if __name__ == "__main__":
main() |