File size: 9,794 Bytes
3cbe462
57a1ea8
3cbe462
263adfe
ac9fced
8228332
3cbe462
263adfe
8228332
263adfe
 
 
ac9fced
3cbe462
 
813a7c3
3cbe462
ac9fced
3cbe462
8aa93ff
72e2bb4
57a1ea8
ac9fced
72e2bb4
ac9fced
72e2bb4
 
8228332
 
 
57a1ea8
 
ac9fced
8228332
 
ac9fced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263adfe
57a1ea8
 
 
263adfe
57a1ea8
 
ac9fced
215ae70
ac9fced
215ae70
ac9fced
 
 
 
 
 
 
 
215ae70
ac9fced
 
 
 
 
 
 
 
 
215ae70
ac9fced
73c62c4
 
215ae70
57a1ea8
 
 
215ae70
ac9fced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215ae70
57a1ea8
ac9fced
 
57a1ea8
215ae70
ac9fced
 
 
57a1ea8
 
ac9fced
 
 
 
 
 
 
 
 
 
 
 
 
215ae70
ac9fced
 
73c62c4
ac9fced
57a1ea8
3cbe462
57a1ea8
215ae70
3cbe462
57a1ea8
 
3cbe462
 
215ae70
57a1ea8
 
 
 
 
 
 
ac9fced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbe462
 
ac9fced
 
 
 
 
 
72e2bb4
ac9fced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62643c9
ac9fced
 
57a1ea8
ac9fced
57a1ea8
ac9fced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57a1ea8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from collections import defaultdict, Counter
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from PIL import Image
from openai import OpenAI
import asyncio
import edge_tts
from streamlit_marquee import streamlit_marquee

st.set_page_config(
    page_title="๐ŸšฒTalkingAIResearcher๐Ÿ†",
    page_icon="๐Ÿšฒ๐Ÿ†",
    layout="wide"
)

EDGE_TTS_VOICES = [
    "en-US-AriaNeural",
    "en-US-GuyNeural", 
    "en-US-JennyNeural",
    "en-GB-SoniaNeural"
]

FILE_EMOJIS = {
    "md": "๐Ÿ“",
    "mp3": "๐ŸŽต",
    "wav": "๐Ÿ”Š",
    "txt": "๐Ÿ“„",
    "pdf": "๐Ÿ“‘"
}

# Initialize session states
if 'tts_voice' not in st.session_state:
    st.session_state['tts_voice'] = EDGE_TTS_VOICES[0]
if 'audio_format' not in st.session_state:
    st.session_state['audio_format'] = 'mp3'
if 'messages' not in st.session_state:
    st.session_state['messages'] = []
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []
if 'viewing_prefix' not in st.session_state:
    st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False

# API Setup
openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
claude_client = anthropic.Anthropic(api_key=os.getenv('ANTHROPIC_API_KEY'))

@st.cache_resource
def get_cached_audio_b64(file_path):
    with open(file_path, "rb") as f:
        return base64.b64encode(f.read()).decode()

def beautify_filename(filename):
    name = os.path.splitext(filename)[0]
    return name.replace('_', ' ').replace('.', ' ')

def create_zip_of_files(md_files, mp3_files, wav_files, query=''):
    all_files = md_files + mp3_files + wav_files
    if not all_files: return None
    
    timestamp = datetime.now().strftime("%y%m_%H%M")
    zip_name = f"{timestamp}_archive.zip"
    with zipfile.ZipFile(zip_name, 'w') as z:
        for f in all_files:
            z.write(f)
    return zip_name

def get_download_link(file_path, file_type="zip"):
    with open(file_path, "rb") as f:
        b64 = base64.b64encode(f.read()).decode()
    ext_map = {'zip': '๐Ÿ“ฆ', 'mp3': '๐ŸŽต', 'wav': '๐Ÿ”Š', 'md': '๐Ÿ“'}
    emoji = ext_map.get(file_type, '')
    return f'<a href="data:application/{file_type};base64,{b64}" download="{os.path.basename(file_path)}">{emoji} Download {os.path.basename(file_path)}</a>'

def load_files_for_sidebar():
    files = [f for f in glob.glob("*.*") if not f.lower().endswith('readme.md')]
    groups = defaultdict(list)
    for f in files:
        basename = os.path.basename(f)
        group_name = basename[:9] if len(basename) >= 9 else 'Other'
        groups[group_name].append(f)
    return sorted(groups.items(), 
                 key=lambda x: max(os.path.getmtime(f) for f in x[1]), 
                 reverse=True)

def display_marquee_controls():
    st.sidebar.markdown("### ๐ŸŽฏ Marquee Settings")
    cols = st.sidebar.columns(2)
    with cols[0]:
        bg_color = st.color_picker("๐ŸŽจ Background", "#1E1E1E")
        text_color = st.color_picker("โœ๏ธ Text", "#FFFFFF")
    with cols[1]:
        font_size = st.slider("๐Ÿ“ Size", 10, 24, 14)
        duration = st.slider("โฑ๏ธ Speed", 1, 20, 10)
    
    return {
        "background": bg_color,
        "color": text_color,
        "font-size": f"{font_size}px",
        "animationDuration": f"{duration}s",
        "width": "100%",
        "lineHeight": "35px"
    }

def display_file_manager_sidebar(groups_sorted):
    st.sidebar.title("๐Ÿ“š File Manager")
    all_files = {'md': [], 'mp3': [], 'wav': []}
    
    for _, files in groups_sorted:
        for f in files:
            ext = os.path.splitext(f)[1].lower().strip('.')
            if ext in all_files:
                all_files[ext].append(f)

    cols = st.sidebar.columns(4)
    for i, (ext, files) in enumerate(all_files.items()):
        with cols[i]:
            if st.button(f"๐Ÿ—‘๏ธ {ext.upper()}"):
                [os.remove(f) for f in files]
                st.session_state.should_rerun = True
                
    if st.sidebar.button("๐Ÿ“ฆ Zip All"):
        zip_name = create_zip_of_files(
            all_files['md'], all_files['mp3'], all_files['wav']
        )
        if zip_name:
            st.sidebar.markdown(get_download_link(zip_name), unsafe_allow_html=True)

    for group_name, files in groups_sorted:
        timestamp = (datetime.strptime(group_name, "%y%m_%H%M").strftime("%Y-%m-%d %H:%M") 
                    if len(group_name) == 9 else group_name)
        
        with st.sidebar.expander(f"๐Ÿ“ {timestamp} ({len(files)})", expanded=True):
            c1, c2 = st.columns(2)
            with c1:
                if st.button("๐Ÿ‘€", key=f"view_{group_name}"):
                    st.session_state.viewing_prefix = group_name
            with c2:
                if st.button("๐Ÿ—‘๏ธ", key=f"del_{group_name}"):
                    [os.remove(f) for f in files]
                    st.session_state.should_rerun = True

            for f in files:
                ext = os.path.splitext(f)[1].lower().strip('.')
                emoji = FILE_EMOJIS.get(ext, '๐Ÿ“„')
                pretty_name = beautify_filename(os.path.basename(f))
                st.write(f"{emoji} **{pretty_name}**")
                
                if ext in ['mp3', 'wav']:
                    st.audio(f)
                    if st.button("๐Ÿ”„", key=f"loop_{f}"):
                        audio_b64 = get_cached_audio_b64(f)
                        st.components.v1.html(
                            f'''
                            <audio id="player_{f}" loop>
                                <source src="data:audio/{ext};base64,{audio_b64}">
                            </audio>
                            <script>
                                document.getElementById("player_{f}").play();
                            </script>
                            ''',
                            height=0
                        )

async def edge_tts_generate(text, voice, file_format="mp3"):
    text = re.sub(r'\s+', ' ', text).strip()
    if not text: return None
    communicate = edge_tts.Communicate(text, voice)
    filename = f"{datetime.now().strftime('%y%m_%H%M')}_{voice}.{file_format}"
    await communicate.save(filename)
    return filename

def parse_arxiv_refs(text):
    papers = []
    current_paper = None
    
    for line in text.split('\n'):
        if '|' in line:
            if current_paper:
                papers.append(current_paper)
            parts = line.strip('* ').split('|')
            current_paper = {
                'date': parts[0].strip(),
                'title': parts[1].strip(),
                'authors': '',
                'summary': '',
                'id': re.search(r'(\d{4}\.\d{5})', line).group(1) if re.search(r'(\d{4}\.\d{5})', line) else ''
            }
        elif current_paper:
            if not current_paper['authors']:
                current_paper['authors'] = line.strip('* ')
            else:
                current_paper['summary'] += ' ' + line.strip()
    
    if current_paper:
        papers.append(current_paper)
    return papers

def perform_ai_lookup(query):
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    response = client.predict(
        query, 20, "Semantic Search", 
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        api_name="/update_with_rag_md"
    )
    
    papers = parse_arxiv_refs(response[0])
    marquee_settings = display_marquee_controls()
    
    for paper in papers:
        content = f"๐Ÿ“„ {paper['title']} | ๐Ÿ‘ค {paper['authors']} | ๐Ÿ“ {paper['summary']}"
        streamlit_marquee(
            content=content,
            **marquee_settings,
            key=f"paper_{paper['id'] or random.randint(1000,9999)}"
        )
        st.write("")  # Spacing
    
    return papers

def main():
    marquee_settings = display_marquee_controls()
    
    streamlit_marquee(
        content="๐Ÿš€ Welcome to TalkingAIResearcher | ๐Ÿค– Your Research Assistant",
        **marquee_settings,
        key="welcome"
    )
    
    tab = st.radio("Action:", ["๐ŸŽค Voice", "๐Ÿ” ArXiv", "๐Ÿ“ Editor"], horizontal=True)
    
    if tab == "๐Ÿ” ArXiv":
        query = st.text_input("๐Ÿ” Search:")
        if query:
            papers = perform_ai_lookup(query)
            st.write(f"Found {len(papers)} papers")
    
    groups = load_files_for_sidebar()
    display_file_manager_sidebar(groups)
    
    if st.session_state.should_rerun:
        st.session_state.should_rerun = False
        st.rerun()

# Condensed sidebar markdown
sidebar_md = """# ๐Ÿ“š Research Papers

## ๐Ÿง  AGI Levels
L0 โŒ No AI
L1 ๐ŸŒฑ ChatGPT/Bard [2303.08774v1](https://arxiv.org/abs/2303.08774) [PDF](https://arxiv.org/pdf/2303.08774.pdf)
L2 ๐Ÿ’ช Watson [2201.11903v1](https://arxiv.org/abs/2201.11903) [PDF](https://arxiv.org/pdf/2201.11903.pdf)
L3 ๐ŸŽฏ DALLยทE [2204.06125v1](https://arxiv.org/abs/2204.06125) [PDF](https://arxiv.org/pdf/2204.06125.pdf)
L4 ๐Ÿ† AlphaGo [1712.01815v1](https://arxiv.org/abs/1712.01815) [PDF](https://arxiv.org/pdf/1712.01815.pdf) 
L5 ๐Ÿš€ AlphaFold [2203.15556v1](https://arxiv.org/abs/2203.15556) [PDF](https://arxiv.org/pdf/2203.15556.pdf)

## ๐Ÿงฌ AlphaFold2 
[2203.15556v1](https://arxiv.org/abs/2203.15556) [PDF](https://arxiv.org/pdf/2203.15556.pdf)
1. ๐Ÿงฌ Input Seq โ†’ 2. ๐Ÿ” DB Search โ†’ 3. ๐Ÿงฉ MSA
4. ๐Ÿ“‘ Templates โ†’ 5. ๐Ÿ”„ Evoformer โ†’ 6. ๐Ÿงฑ Structure
7. ๐ŸŽฏ 3D Predict โ†’ 8. โ™ป๏ธ Recycle x3"""

st.sidebar.markdown(sidebar_md)

if __name__ == "__main__":
    main()