Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,384 Bytes
57a1ea8 3cbe462 57a1ea8 263adfe 3cbe462 263adfe 359a82d 8228332 3cbe462 263adfe 8228332 263adfe 57a1ea8 3cbe462 57a1ea8 3cbe462 813a7c3 3cbe462 8aa93ff 57a1ea8 72e2bb4 57a1ea8 72e2bb4 8228332 57a1ea8 8228332 263adfe 57a1ea8 263adfe 57a1ea8 3cbe462 215ae70 57a1ea8 215ae70 57a1ea8 73c62c4 215ae70 73c62c4 215ae70 57a1ea8 215ae70 57a1ea8 3cbe462 57a1ea8 215ae70 57a1ea8 3cbe462 57a1ea8 3cbe462 57a1ea8 359a82d 57a1ea8 359a82d 57a1ea8 359a82d 57a1ea8 215ae70 73c62c4 57a1ea8 3cbe462 57a1ea8 215ae70 3cbe462 57a1ea8 3cbe462 215ae70 57a1ea8 3cbe462 57a1ea8 72e2bb4 62643c9 57a1ea8 a820539 8228332 57a1ea8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# requirements.txt additions:
"""
streamlit-marquee
"""
# app.py
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from collections import defaultdict, deque, Counter
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
import asyncio
import edge_tts
from streamlit_marquee import st_marquee
# Core setup
st.set_page_config(
page_title="🚲TalkingAIResearcher🏆",
page_icon="🚲🏆",
layout="wide",
initial_sidebar_state="auto",
)
# Initialize session state
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = "en-US-AriaNeural"
if 'audio_format' not in st.session_state:
st.session_state['audio_format'] = 'mp3'
if 'scroll_text' not in st.session_state:
st.session_state['scroll_text'] = ''
EDGE_TTS_VOICES = [
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-US-JennyNeural",
"en-GB-SoniaNeural",
]
FILE_EMOJIS = {
"md": "📝",
"mp3": "🎵",
"wav": "🔊",
"txt": "📄",
"pdf": "📑",
"json": "📊",
"csv": "📈",
"zip": "📦"
}
@st.cache_resource
def get_cached_audio_b64(file_path):
"""Cache audio file as base64"""
with open(file_path, "rb") as f:
return base64.b64encode(f.read()).decode()
def beautify_filename(filename):
"""Make filename more readable"""
name = os.path.splitext(filename)[0]
name = name.replace('_', ' ').replace('.', ' ')
return name
def load_files_for_sidebar():
"""Load and group files by timestamp prefix"""
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
wav_files = glob.glob("*.wav")
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files + wav_files
groups = defaultdict(list)
for f in all_files:
basename = os.path.basename(f)
group_name = basename[:9] if len(basename) >= 9 else 'Other'
groups[group_name].append(f)
return sorted(groups.items(),
key=lambda x: max(os.path.getmtime(f) for f in x[1]),
reverse=True)
def display_file_manager_sidebar(groups_sorted):
"""Enhanced sidebar with audio players and beautified names"""
st.sidebar.title("📚 File Manager")
all_md, all_mp3, all_wav = [], [], []
for _, files in groups_sorted:
for f in files:
if f.endswith(".md"): all_md.append(f)
elif f.endswith(".mp3"): all_mp3.append(f)
elif f.endswith(".wav"): all_wav.append(f)
# File management buttons
cols = st.sidebar.columns(4)
with cols[0]:
if st.button("🗑️ MD"):
[os.remove(f) for f in all_md]
st.session_state.should_rerun = True
with cols[1]:
if st.button("🗑️ MP3"):
[os.remove(f) for f in all_mp3]
st.session_state.should_rerun = True
with cols[2]:
if st.button("🗑️ WAV"):
[os.remove(f) for f in all_wav]
st.session_state.should_rerun = True
with cols[3]:
if st.button("📦 Zip"):
zip_name = create_zip_of_files(all_md, all_mp3, all_wav,
st.session_state.get('last_query', ''))
if zip_name:
st.sidebar.markdown(get_download_link(zip_name), unsafe_allow_html=True)
# Display file groups
for group_name, files in groups_sorted:
timestamp_dt = datetime.strptime(group_name, "%y%m_%H%M") if len(group_name) == 9 else None
group_label = timestamp_dt.strftime("%Y-%m-%d %H:%M") if timestamp_dt else group_name
with st.sidebar.expander(f"📁 {group_label} ({len(files)})", expanded=True):
c1, c2 = st.columns(2)
with c1:
if st.button("👀", key=f"view_{group_name}"):
st.session_state.viewing_prefix = group_name
with c2:
if st.button("🗑️", key=f"del_{group_name}"):
[os.remove(f) for f in files]
st.session_state.should_rerun = True
for f in files:
ext = os.path.splitext(f)[1].lower().strip('.')
emoji = FILE_EMOJIS.get(ext, '📄')
pretty_name = beautify_filename(os.path.basename(f))
st.write(f"{emoji} **{pretty_name}**")
if ext in ['mp3', 'wav']:
audio_b64 = get_cached_audio_b64(f)
st.audio(f)
cols = st.columns([3,1])
with cols[1]:
if st.button("🔄", key=f"loop_{f}"):
components.html(
f'''
<audio id="player_{f}" loop>
<source src="data:audio/{ext};base64,{audio_b64}">
</audio>
<script>
document.getElementById("player_{f}").play();
</script>
''',
height=0
)
def main():
# Add scrolling banner
st_marquee(
text=" | ".join(st.session_state.get('scroll_text', '🚀 Welcome to TalkingAIResearcher').split('\n')),
font_size=20,
)
# Rest of the main UI code...
# (Keep existing main() implementation but with beautified filenames)
# Compressed sidebar markdown
sidebar_md = """
# 🧠 AGI Levels
L0 ❌ No AI
L1 🌱 Emerging (ChatGPT, Bard)
L2 💪 Competent (Watson)
L3 🎯 Expert (DALL·E)
L4 🏆 Virtuoso (AlphaGo)
L5 🚀 Superhuman (AlphaFold)
# 🧬 AlphaFold2
1. 🧬 Input Seq
2. 🔍 DB Search
3. 🧩 MSA
4. 📑 Templates
5. 🔄 Evoformer
6. 🧱 Structure
7. 🎯 3D Predict
8. ♻️ Recycle x3
"""
if __name__=="__main__":
main() |