Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
#!/usr/bin/env python3 | |
import os | |
import re | |
import glob | |
import json | |
import base64 | |
import zipfile | |
import random | |
import requests | |
import openai | |
from PIL import Image | |
from urllib.parse import quote | |
import streamlit as st | |
import streamlit.components.v1 as components | |
# Example base snippet: your normal Mermaid code | |
DEFAULT_MERMAID = r""" | |
flowchart LR | |
U((User ๐)) -- "Talk ๐ฃ๏ธ" --> LLM[LLM Agent ๐ค\nExtract Info] | |
click U "/?q=User%20๐" "Open 'User ๐'" "_blank" | |
click LLM "/?q=LLM%20Agent%20Extract%20Info" "Open LLM Agent" "_blank" | |
LLM -- "Query ๐" --> HS[Hybrid Search ๐\nVector+NER+Lexical] | |
click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" "Open Hybrid Search" "_blank" | |
HS -- "Reason ๐ค" --> RE[Reasoning Engine ๐ ๏ธ\nNeuralNetwork+Medical] | |
click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" "Open Reasoning" "_blank" | |
RE -- "Link ๐ก" --> KG((Knowledge Graph ๐\nOntology+GAR+RAG)) | |
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open Knowledge Graph" "_blank" | |
""" | |
def parse_mermaid_edges(mermaid_text: str): | |
""" | |
๐ฟ parse_mermaid_edges: | |
- Find lines like `A -- "Label" --> B`. | |
- Return adjacency dict: edges[A] = [(label, B), ...]. | |
""" | |
adjacency = {} | |
# Regex to match lines like: A -- "Label" --> B | |
edge_pattern = re.compile(r'(\S+)\s*--\s*"([^"]*)"\s*-->\s*(\S+)') | |
# We split the text into lines and search for edges | |
for line in mermaid_text.split('\n'): | |
match = edge_pattern.search(line.strip()) | |
if match: | |
nodeA, label, nodeB = match.groups() | |
if nodeA not in adjacency: | |
adjacency[nodeA] = [] | |
adjacency[nodeA].append((label, nodeB)) | |
return adjacency | |
def build_subgraph(adjacency, start_node): | |
""" | |
๐ build_subgraph: | |
- BFS or DFS from start_node to gather edges. | |
- For simplicity, we only gather direct edges from this node. | |
- If you want a multi-level downstream search, do a BFS/DFS deeper. | |
""" | |
sub_edges = [] | |
# If start_node has no adjacency, return empty | |
if start_node not in adjacency: | |
return sub_edges | |
# For each edge out of start_node, store it in sub_edges | |
for label, child in adjacency[start_node]: | |
sub_edges.append((start_node, label, child)) | |
return sub_edges | |
def create_subgraph_mermaid(sub_edges, start_node): | |
""" | |
๐ create_subgraph_mermaid: | |
- Given a list of edges in form (A, label, B), | |
- Return a smaller flowchart snippet that includes them. | |
""" | |
# Start with the flowchart directive | |
sub_mermaid = "flowchart LR\n" | |
sub_mermaid += f" %% Subgraph for {start_node}\n" | |
# For each edge, build a line: NodeA -- "Label" --> NodeB | |
for (A, label, B) in sub_edges: | |
# Potentially you can keep the original styles or shapes (like U((User ๐))). | |
# If your original code has shapes, you can store them in a dict so A-> "U((User ๐))" etc. | |
sub_mermaid += f' {A} -- "{label}" --> {B}\n' | |
# Optionally add a comment to show the subgraph ends | |
sub_mermaid += f" %% End of subgraph for {start_node}\n" | |
return sub_mermaid | |
def generate_mermaid_html(mermaid_code: str) -> str: | |
"""Tiny function to embed Mermaid code in HTML with a CDN.""" | |
return f""" | |
<html> | |
<head> | |
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script> | |
<style> | |
.centered-mermaid {{ | |
display: flex; | |
justify-content: center; | |
margin: 20px auto; | |
}} | |
.mermaid {{ | |
max-width: 800px; | |
}} | |
</style> | |
</head> | |
<body> | |
<div class="mermaid centered-mermaid"> | |
{mermaid_code} | |
</div> | |
<script> | |
mermaid.initialize({{ startOnLoad: true }}); | |
</script> | |
</body> | |
</html> | |
""" | |
def main(): | |
st.set_page_config(page_title="Partial Subgraph Demo", layout="wide") | |
st.title("Partial Mermaid Subgraph from a Clicked Node") | |
# 1) Show the main diagram | |
st.subheader("Full Diagram:") | |
full_html = generate_mermaid_html(DEFAULT_MERMAID) | |
components.html(full_html, height=400, scrolling=True) | |
# 2) Build adjacency from the original code | |
adjacency = parse_mermaid_edges(DEFAULT_MERMAID) | |
# 3) See if user clicked a shape, e.g. ?q=LLM%20Agent%20Extract%20Info | |
query_params = st.query_params | |
clicked = (query_params.get('q') or [""])[0] # If present | |
if clicked: | |
# The "clicked" node might contain spaces or special chars. | |
# We typically match the "nodeId" from the code. | |
# But your code might have the real node name "LLM" or "RE", etc. | |
# If your node is "LLM" and the label is "LLM Agent Extract Info", | |
# you might need to map them. | |
# For simplicity, let's assume your node ID is the same as the label | |
# after removing spaces. | |
# Or if your original code uses node IDs like 'LLM' or 'U'. | |
# We'll show an example: | |
# We can guess your node ID might be "LLM" if the text includes "LLM". | |
# Let's try a simpler approach: you store an internal mapping | |
# from node ID -> label. We'll do a brute force approach: | |
st.info(f"User clicked shape: {clicked}") | |
# Suppose we want to find the adjacency key that best matches the clicked string: | |
# This is a naive approach: | |
# We'll see if 'clicked' is a substring of the adjacency's node key. | |
possible_keys = [] | |
for nodeKey in adjacency.keys(): | |
if clicked.lower().replace("%20", " ").replace("extract info", "") in nodeKey.lower(): | |
possible_keys.append(nodeKey) | |
# If we found one or more possible matches, take the first | |
if possible_keys: | |
chosen_node = possible_keys[0] | |
# Build subgraph from adjacency | |
sub_edges = build_subgraph(adjacency, chosen_node) | |
if sub_edges: | |
sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node) | |
# Display top-centered subgraph | |
st.subheader(f"SearchResult Subgraph for Node: {chosen_node}") | |
partial_html = generate_mermaid_html(sub_mermaid) | |
components.html(partial_html, height=300, scrolling=False) | |
else: | |
st.warning(f"No outgoing edges from node '{chosen_node}'.") | |
else: | |
st.warning("No matching node found in adjacency for that query param.") | |
else: | |
st.info("No shape clicked, or no ?q= in the query parameters.") | |
if __name__ == "__main__": | |
main() | |