awacke1's picture
Update app.py
621f3cd verified
import os
import gradio as gr
import openai as o
import base64
import fitz # PyMuPDF
import cv2
from moviepy.video.io.VideoFileClip import VideoFileClip
import json
import requests
import re
from io import BytesIO
from PIL import Image
from pathlib import Path
import numpy as np
from fastrtc.gradio import WebRTC
import soundfile as sf
# 📜 CONFIG
UI_TITLE = "✨🧙‍♂️🔮 GPT-4o Omni-Oracle"
KEY_FILE = "key.txt"
STATE_FILE = "app_state.json"
MODELS = {
"GPT-4o ✨": "gpt-4o",
"o3 (Advanced Reasoning) 🧠": "gpt-4-turbo", # Placeholder
"o4-mini (Fastest) ⚡": "gpt-4-turbo", # Placeholder
"o4-mini-high (Vision) 👁️‍🗨️": "gpt-4o", # Placeholder
"GPT-4.5 (Research) 🔬": "gpt-4-turbo-preview", # Placeholder
"GPT-4.1 (Analysis) 💻": "gpt-4-turbo", # Placeholder
"GPT-4.1-mini (Everyday) ☕": "gpt-4-turbo", # Placeholder
}
VOICES = ["alloy", "ash", "ballad", "coral", "echo", "fable", "nova", "onyx", "sage", "shimmer"]
TTS_MODELS = ["gpt-4o-mini-tts", "tts-1", "tts-1-hd"]
FORMATS = ["mp3", "opus", "aac", "flac", "wav", "pcm"]
LANGUAGES = {
"🇬🇧 English": "English", "🇨🇳 Chinese": "Chinese", "🇫🇷 French": "French", "🇩🇪 German": "German",
"🇮🇱 Hebrew": "Hebrew", "🇮🇳 Hindi": "Hindi", "🇯🇵 Japanese": "Japanese", "🇳🇿 Maori": "Maori",
"🇷🇺 Russian": "Russian", "🇪🇸 Spanish": "Spanish"
}
# For WebRTC - Replace with your own if deploying on a cloud provider
RTC_CONFIGURATION = {
"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]
}
# 🎨 STYLE
H1 = "# <font size='7'>{0}</font>"
H2 = "## <font size='6'>{0}</font>"
CSS = """
.my-group {max-width: 500px !important; max-height: 500px !important;}
.my-column {display: flex !important; justify-content: center !important; align-items: center !important;}
"""
# 🪄 HELPERS, LORE & AUTOSAVE RITUALS
def save_state(data: dict):
with open(STATE_FILE, 'w') as f:
json.dump(data, f, indent=4)
def load_state() -> dict:
if os.path.exists(STATE_FILE):
with open(STATE_FILE, 'r') as f:
try:
return json.load(f)
except json.JSONDecodeError:
return {}
return {}
def update_and_save(key: str, value, state: dict):
state[key] = value
save_state(state)
return state
def save_key(k: str) -> str:
if not k or not k.strip(): return "🚫 Empty Key"
with open(KEY_FILE, "w") as f: f.write(k.strip())
return "🔑✅ Key Saved!"
def get_key(k: str) -> str:
k = k.strip() if k and k.strip() else (open(KEY_FILE).read().strip() if os.path.exists(KEY_FILE) else os.getenv("OPENAI_KEY", ""))
if not k: raise gr.Error("❗🔑 An Eldritch Key (OpenAI API Key) is required.")
o.api_key = k
return k
def invoke_oracle(scribe_key: str, model_key: str, system_prompt: str, user_content: list, history: list):
get_key(scribe_key)
model_name = MODELS.get(model_key, "gpt-4o")
messages = history + [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_content}]
try:
prophecy = o.chat.completions.create(model=model_name, messages=messages, stream=True)
history.append({"role": "user", "content": "..."})
history.append({"role": "assistant", "content": ""})
for chunk in prophecy:
if chunk.choices[0].delta.content:
history[-1]['content'] += chunk.choices[0].delta.content
yield history
except Exception as e:
yield history + [{"role": "assistant", "content": f"🧙‍♂️🔮 A magical disturbance occurred: {str(e)}"}]
def handle_text_submission(api_key, model, prompt, history):
"""A clear path for text quests to the Oracle."""
yield from invoke_oracle(api_key, model, "You are a helpful AI assistant.", [{"type": "text", "text": prompt}], history)
# --- Image & Audio Streaming Functions ---
def transform_cv2(frame: np.ndarray, transform: str):
"""Applies a magical filter to a single frame from a webcam stream."""
if frame is None: return None
if transform == "cartoon":
img_color = cv2.pyrDown(cv2.pyrDown(frame))
for _ in range(6):
img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
img_color = cv2.pyrUp(cv2.pyrUp(img_color))
img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
img_edges = cv2.adaptiveThreshold(cv2.medianBlur(img_edges, 7), 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2)
img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
return cv2.bitwise_and(img_color, img_edges)
elif transform == "edges":
return cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
elif transform == "flip":
return np.flipud(frame)
return frame
def transcribe_streaming(api_key, audio_chunk, history_state):
"""Transcribes a chunk of audio, keeping context from previous chunks."""
if audio_chunk is None:
return history_state, history_state
get_key(api_key)
sample_rate, data = audio_chunk
temp_wav_path = f"temp_chunk_{hash(data.tobytes())}.wav"
sf.write(temp_wav_path, data, sample_rate)
try:
with open(temp_wav_path, "rb") as audio_file:
transcript = o.audio.transcriptions.create(model="whisper-1", file=audio_file)
new_text = transcript.text
except Exception as e:
print(f"Transcription error: {e}")
new_text = ""
finally:
if os.path.exists(temp_wav_path):
os.remove(temp_wav_path)
history_state += new_text + " "
return history_state, history_state
def generate_speech(api_key, tts_model, voice, text, language_key, format, progress=gr.Progress()):
get_key(api_key)
language = LANGUAGES.get(language_key, "English")
progress(0.2, desc=f"Translating to {language}...")
translated_text = text
if language != "English":
try:
response = o.chat.completions.create(model="gpt-4o", messages=[{"role": "system", "content": f"Translate to {language}. Output only the translation."}, {"role": "user", "content": text}], temperature=0)
translated_text = response.choices[0].message.content
except Exception as e:
raise gr.Error(f"Translation failed: {e}")
progress(0.6, desc="Summoning voice...")
speech_file_path = Path(__file__).parent / f"speech.{format}"
try:
response = o.audio.speech.create(model=tts_model, voice=voice, input=translated_text, response_format=format)
response.stream_to_file(speech_file_path)
except Exception as e:
raise gr.Error(f"Speech generation failed: {e}")
progress(1.0, desc="Voice summoned!")
return str(speech_file_path), translated_text
# 🔮 UI
with gr.Blocks(title=UI_TITLE, theme=gr.themes.Soft(primary_hue="red", secondary_hue="orange"), css=CSS) as demo:
initial_state = load_state()
app_state = gr.State(initial_state)
gr.Markdown(H1.format(UI_TITLE))
with gr.Accordion("🔑 Eldritch Key & Oracle Selection", open=True):
with gr.Row():
api_key_box = gr.Textbox(label="🔑 Key", type="password", placeholder="sk-...", scale=3, value=initial_state.get('api_key', ''))
save_btn = gr.Button("💾", scale=1)
status_txt = gr.Textbox(interactive=False, scale=1, label="Status")
model_selector = gr.Dropdown(choices=list(MODELS.keys()), label="🔮 Oracle", value=initial_state.get('model', "GPT-4o ✨"))
save_btn.click(save_key, inputs=api_key_box, outputs=status_txt)
chatbot = gr.Chatbot(height=400, label="📜 Scroll of Conversation", type='messages', value=initial_state.get('chatbot', []))
with gr.Tabs():
with gr.TabItem("💬 Chat"):
text_prompt = gr.Textbox(label="Your Quest:", placeholder="Type your message...", value=initial_state.get('text_prompt', ''))
text_event = text_prompt.submit(fn=handle_text_submission, inputs=[api_key_box, model_selector, text_prompt, chatbot], outputs=chatbot)
with gr.TabItem("🖼️ Streaming Image"):
gr.Markdown(H2.format("Live Image Enchantments"))
with gr.Column(elem_classes=["my-column"]):
with gr.Group(elem_classes=["my-group"]):
transform_filter = gr.Dropdown(choices=["cartoon", "edges", "flip"], value="flip", label="Transformation")
streaming_image = gr.Image(sources=["webcam"], type="numpy", streaming=True)
streaming_image.stream(transform_cv2, [streaming_image, transform_filter], streaming_image, time_limit=30, stream_every=0.1)
with gr.TabItem("🎤 Streaming Audio"):
gr.Markdown(H2.format("Real-time Transcription Rite"))
with gr.Row():
mic_input = gr.Audio(sources="microphone", streaming=True)
transcript_output = gr.Textbox(label="Transcript", interactive=False)
transcript_state = gr.State(value="")
mic_input.stream(transcribe_streaming, [api_key_box, mic_input, transcript_state], [transcript_state, transcript_output], time_limit=30, stream_every=2)
with gr.TabItem("👁️ Object Detection (WebRTC)"):
gr.Markdown(H2.format("Live Scrying Spell"))
gr.HTML("<h3 style='text-align: center'>NOTE: This is a UI placeholder. A separate inference server for the YOLO model is required for this to function.</h3>")
with gr.Column(elem_classes=["my-column"]):
with gr.Group(elem_classes=["my-group"]):
webrtc_stream = WebRTC(label="Stream", rtc_configuration=RTC_CONFIGURATION)
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.0, maximum=1.0, step=0.05, value=0.30)
# Placeholder for the actual stream event handler which would call a loaded YOLOv10 model
# def detection_placeholder(image, conf): return image
# webrtc_stream.stream(fn=detection_placeholder, inputs=[webrtc_stream, conf_threshold], outputs=[webrtc_stream], time_limit=10)
with gr.TabItem("🔊 Speech Synthesis"):
gr.Markdown(H2.format("Give Voice to Words"))
tts_language = gr.Radio(choices=list(LANGUAGES.keys()), label="🈯 Language", value=initial_state.get('tts_language', "🇬🇧 English"))
with gr.Row():
tts_voice = gr.Dropdown(choices=VOICES, label="🗣️ Voice", value=initial_state.get('tts_voice', "alloy"))
tts_model_select = gr.Dropdown(choices=TTS_MODELS, label="🧠 TTS Model", value=initial_state.get('tts_model', "gpt-4o-mini-tts"))
tts_format = gr.Dropdown(choices=FORMATS, label="📦 Format", value=initial_state.get('tts_format', "mp3"))
tts_text_input = gr.Textbox(label="📜 Text to Speak", lines=4, placeholder="Enter text here...", value=initial_state.get('tts_text', ''))
tts_btn = gr.Button("🔊 Generate Speech")
tts_translated_text = gr.Textbox(label="Translated Text (Output)", interactive=False)
tts_audio_output = gr.Audio(label="🎧 Spoken Word", type="filepath")
tts_event = tts_btn.click(generate_speech, [api_key_box, tts_model_select, tts_voice, tts_text_input, tts_language, tts_format], [tts_audio_output, tts_translated_text])
# --- Autosave Event Listeners ---
components_to_save = {
'api_key': api_key_box, 'model': model_selector, 'text_prompt': text_prompt,
'tts_language': tts_language, 'tts_voice': tts_voice,
'tts_model': tts_model_select, 'tts_format': tts_format, 'tts_text': tts_text_input
}
for key, component in components_to_save.items():
component.change(update_and_save, [gr.State(key), component, app_state], app_state)
text_event.then(lambda history, state: update_and_save('chatbot', history, state), [chatbot, app_state], app_state)
if __name__ == "__main__":
demo.launch(share=True, debug=True)