Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
metadata
title: TorchTransformers Diffusion CV SFT
emoji: ⚡
colorFrom: yellow
colorTo: indigo
sdk: streamlit
sdk_version: 1.43.2
app_file: app.py
pinned: false
license: mit
short_description: Torch Transformers Diffusion SFT for Computer Vision
SFT Tiny Titans 🚀
Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. pip install -r requirements.txt
, streamlit run app.py
. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed
${title}
${short_description}
Abstract
TorchTransformers Diffusion SFT Titans harnesses torch
, transformers
, and diffusers
for cutting-edge NLP and CV, powered by supervised fine-tuning (SFT). Dual st.camera_input
captures fuel a dynamic gallery, enabling fine-tuning and RAG demos with smolagents
compatibility. Key papers illuminate the stack:
- Streamlit: A Declarative Framework for Data Apps - Thiessen et al., 2023: Streamlit’s UI framework.
- PyTorch: An Imperative Style, High-Performance Deep Learning Library - Paszke et al., 2019: Torch foundation.
- Attention is All You Need - Vaswani et al., 2017: Transformers for NLP.
- Denoising Diffusion Probabilistic Models - Ho et al., 2020: Diffusion models in CV.
- Pandas: A Foundation for Data Analysis in Python - McKinney, 2010: Data handling with Pandas.
- Pillow: The Python Imaging Library - Clark et al., 2023: Image processing (no direct arXiv, but cited as foundational).
- pytz: Time Zone Calculations in Python - Henshaw, 2023: Time handling (no direct arXiv, but contextual).
- OpenCV: Open Source Computer Vision Library - Bradski, 2000: CV processing (no direct arXiv, but seminal).
- Fine-Tuning Vision Transformers for Image Classification - Dosovitskiy et al., 2021: SFT for CV.
- LoRA: Low-Rank Adaptation of Large Language Models - Hu et al., 2021: Efficient SFT techniques.
- Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks - Lewis et al., 2020: RAG foundations.
- Transfusion: Multi-Modal Model with Token Prediction and Diffusion - Li et al., 2024: Combined NLP/CV SFT.
Run: pip install -r requirements.txt
, streamlit run ${app_file}
. Snap, tune, party! ${emoji}