|
--- |
|
title: TorchTransformers Diffusion CV SFT |
|
emoji: ⚡ |
|
colorFrom: yellow |
|
colorTo: indigo |
|
sdk: streamlit |
|
sdk_version: 1.43.2 |
|
app_file: app.py |
|
pinned: false |
|
license: mit |
|
short_description: Torch Transformers Diffusion SFT for Computer Vision |
|
--- |
|
|
|
# SFT Tiny Titans 🚀 |
|
Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. `pip install -r requirements.txt`, `streamlit run app.py`. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed |
|
|
|
|
|
# ${title} |
|
|
|
${short_description} |
|
|
|
## Abstract |
|
TorchTransformers Diffusion SFT Titans harnesses `torch`, `transformers`, and `diffusers` for cutting-edge NLP and CV, powered by supervised fine-tuning (SFT). Dual `st.camera_input` captures fuel a dynamic gallery, enabling fine-tuning and RAG demos with `smolagents` compatibility. Key papers illuminate the stack: |
|
|
|
- **[Streamlit: A Declarative Framework for Data Apps](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: Streamlit’s UI framework. |
|
- **[PyTorch: An Imperative Style, High-Performance Deep Learning Library](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch foundation. |
|
- **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: Transformers for NLP. |
|
- **[Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: Diffusion models in CV. |
|
- **[Pandas: A Foundation for Data Analysis in Python](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling with Pandas. |
|
- **[Pillow: The Python Imaging Library](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing (no direct arXiv, but cited as foundational). |
|
- **[pytz: Time Zone Calculations in Python](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time handling (no direct arXiv, but contextual). |
|
- **[OpenCV: Open Source Computer Vision Library](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV processing (no direct arXiv, but seminal). |
|
- **[Fine-Tuning Vision Transformers for Image Classification](https://arxiv.org/abs/2106.10504)** - Dosovitskiy et al., 2021: SFT for CV. |
|
- **[LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: Efficient SFT techniques. |
|
- **[Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: RAG foundations. |
|
- **[Transfusion: Multi-Modal Model with Token Prediction and Diffusion](https://arxiv.org/abs/2408.11039)** - Li et al., 2024: Combined NLP/CV SFT. |
|
|
|
Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Snap, tune, party! ${emoji} |
|
|
|
|