awacke1's picture
Update README.md
67a1ae5 verified
|
raw
history blame
5.52 kB
metadata
title: TorchTransformers Diffusion CV SFT
emoji: 
colorFrom: yellow
colorTo: indigo
sdk: streamlit
sdk_version: 1.43.2
app_file: app.py
pinned: false
license: mit
short_description: Torch Transformers Diffusion SFT for Computer Vision

Abstract

Fuse torch, transformers, and diffusers for SFT-powered NLP and CV! Dual st.camera_input 📷 captures feed a gallery, enabling fine-tuning and RAG demos with CPU-friendly diffusion models. Key papers:

  • 🌐 Streamlit Framework - Thiessen et al., 2023: UI magic.
  • 🔥 PyTorch DL - Paszke et al., 2019: Torch core.
  • 🧠 Attention is All You Need - Vaswani et al., 2017: NLP transformers.
  • 🎨 DDPM - Ho et al., 2020: Denoising diffusion.
  • 📊 Pandas - McKinney, 2010: Data handling.
  • 🖼️ Pillow - Clark et al., 2023: Image processing.
  • pytz - Henshaw, 2023: Time zones.
  • 👁️ OpenCV - Bradski, 2000: CV tools.
  • 🎨 LDM - Rombach et al., 2022: Latent diffusion.
  • ⚙️ LoRA - Hu et al., 2021: SFT efficiency.
  • 🔍 RAG - Lewis et al., 2020: Retrieval-augmented generation.

Run: pip install -r requirements.txt, streamlit run ${app_file}. Build, snap, party! ${emoji}

Usage 🎯

  • 🌱📷 Build Titan & Camera Snap:
    • 🎨 Use Model: Run OFA-Sys/small-stable-diffusion-v0 (300 MB) or google/ddpm-ema-celebahq-256 (280 MB) online.
    • ⬇️ Download Model: Save <500 MB diffusion models locally.
    • 📷 Snap: Capture unique PNGs with dual cams.
  • 🔧 SFT: Tune Causal LM with CSV or Diffusion with image-text pairs.
  • 🧪 Test: Pair text with images, select pipeline, hit "Run Test 🚀".
  • 🌐 RAG Party: NLP plans or CV images for superhero bashes!

Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. pip install -r requirements.txt, streamlit run app.py. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed

SFT Tiny Titans 🚀 (Small Diffusion Delight!)

A Streamlit app for Supervised Fine-Tuning (SFT) of small diffusion models, featuring multi-camera capture, model testing, and agentic RAG demos with a playful UI.

Features 🎉

  • Build Titan 🌱: Spin up tiny diffusion models from Hugging Face (Micro Diffusion, Latent Diffusion, FLUX.1 Distilled).
  • Camera Snap 📷: Snap pics with 6 cameras using a 4-column grid UI per cam—witty, emoji-packed controls for device, label, hint, and visibility! 📸✨
  • Fine-Tune Titan (CV) 🔧: Tune models with 3 use cases—denoising, stylization, multi-angle generation—using your camera captures, with CSV/MD exports.
  • Test Titan (CV) 🧪: Generate images from prompts with your tuned diffusion titan.
  • Agentic RAG Party (CV) 🌐: Craft superhero party visuals from camera-inspired prompts.
  • Media Gallery 🎨: View, download, or zap captured images with flair.

Installation 🛠️

  1. Clone the repo:
    git clone <repository-url>
    cd sft-tiny-titans
    

Abstract

TorchTransformers Diffusion SFT Titans harnesses torch, transformers, and diffusers for cutting-edge NLP and CV, powered by supervised fine-tuning (SFT). Dual st.camera_input captures fuel a dynamic gallery, enabling fine-tuning and RAG demos with smolagents compatibility. Key papers illuminate the stack:

Run: pip install -r requirements.txt, streamlit run ${app_file}. Snap, tune, party! ${emoji}