File size: 6,768 Bytes
f8b6069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be1f96e
f8b6069
 
 
 
 
 
 
 
 
 
be1f96e
f8b6069
 
be1f96e
f8b6069
 
 
be1f96e
f8b6069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a6473
be1f96e
 
 
 
 
 
 
 
 
 
 
f8b6069
be1f96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a6473
43a659b
a3a6473
 
 
 
77b134f
2d0c742
a3a6473
 
3300f09
 
a3a6473
 
 
 
 
 
 
 
 
 
 
f0d7864
 
a3a6473
 
 
 
43a659b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be1f96e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""import gradio as gr
import torch
from PIL import Image
from pathlib import Path
import numpy as np

# Load YOLO Model
model = torch.hub.load('ultralytics/yolov5', 'custom', path='https://huggingface.co/ayoubsa/yolo_model/blob/main/best.pt')  # Replace 'model.pt' with your uploaded model's path

# Function to make predictions
def predict(image):
    # Convert input to PIL image if it's not
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    # Run inference
    results = model(image)
    
    # Extract predictions (bounding boxes, labels, confidence scores)
    predictions = results.pandas().xyxy[0]  # Pandas dataframe
    annotated_image = np.array(results.render()[0])  # Annotated image as NumPy array
    
    return annotated_image, predictions[['name', 'confidence']].to_dict(orient="records")

# Create Gradio Interface
image_input = gr.inputs.Image(type="numpy", label="Input Image")
output_image = gr.outputs.Image(type="numpy", label="Annotated Image")
output_text = gr.outputs.JSON(label="Predictions (Labels & Confidence)")

interface = gr.Interface(
    fn=predict,
    inputs=image_input,
    outputs=[output_image, output_text],
    title="YOLO Object Detection",
    description="Upload an image to detect objects using YOLO.",
    examples=["example1.jpg", "example2.jpg", "example3.jpg"]  # Provide paths to example images
)

interface.launch()


from datasets import load_dataset
import gradio as gr
import random
import numpy as np
from PIL import Image
import torch

# Load the YOLO model
model = torch.hub.load('ultralytics/yolov5', 'custom', path='https://huggingface.co/ayoubsa/yolo_model/blob/main/best.pt')  # Replace with your uploaded model's path

# Load your dataset from Hugging Face
dataset = load_dataset("https://huggingface.co/datasets/ayoubsa/Sign_Road_Detection_Dataset/tree/main")  # Replace with your dataset's repository name on Hugging Face

# Function to get random examples from the dataset
def get_random_examples(dataset, num_examples=3):
    images = dataset['test'][:]['image']  # Assuming the images are in the 'train' split and column 'image'
    random_examples = random.sample(images, num_examples)
    return random_examples

# Define the prediction function
def predict(image):
    results = model(image)  # Perform object detection using YOLO
    results.render()  # Render bounding boxes on the image
    output_image = Image.fromarray(results.imgs[0])  # Convert to PIL image
    return output_image

# Get examples for Gradio app
example_images = get_random_examples(dataset, num_examples=3)

# Create the Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.inputs.Image(type="pil"),  # PIL Image for compatibility with YOLO
    outputs=gr.outputs.Image(type="pil"),
    examples=example_images  # Linking examples directly from Hugging Face dataset
)

# Launch the Gradio app
iface.launch()

import gradio as gr
import torch
from PIL import Image
import zipfile
import os
import random

# Define the paths for the model and dataset
MODEL_PATH = 'https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt'  # YOLO model file
DATASET_PATH = 'test.zip'  # The name of the uploaded test dataset zip file

# Load the YOLO model
model = torch.hub.load('ultralytics/yolov5', 'custom', path=MODEL_PATH)

# Unzip the dataset
if not os.path.exists("unzipped_test"):
    with zipfile.ZipFile(DATASET_PATH, 'r') as zip_ref:
        zip_ref.extractall("unzipped_test")  # Extract images to this folder

# Get all image paths from the unzipped folder
image_folder = "unzipped_test"
all_images = [os.path.join(image_folder, f) for f in os.listdir(image_folder) if f.endswith(('.jpg', '.png', '.jpeg'))]

# Function to get random examples
def get_random_examples(num_examples=3):
    if len(all_images) >= num_examples:
        return random.sample(all_images, num_examples)
    else:
        return all_images  # Return whatever is available if less than required

# Define the prediction function
def predict(image):
    results = model(image)  # Perform object detection using YOLO
    results.render()  # Render bounding boxes on the image
    output_image = Image.fromarray(results.imgs[0])  # Convert to PIL image
    return output_image

# Get example images
example_images = get_random_examples(num_examples=3)

# Create the Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.inputs.Image(type="pil", label="Upload an Image"),
    outputs=gr.outputs.Image(type="pil", label="Predicted Image with Bounding Boxes"),
    examples=example_images  # Link the example images
)

# Launch the Gradio app
iface.launch()

import gradio as gr
import torch
from PIL import Image
import numpy as np
from ultralytics import YOLO

# Load the YOLO model
MODEL_URL= 'https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt'
model = YOLO(MODEL_URL)

# Define the prediction function
def predict(image):
    results = model(image)  # Perform object detection using YOLO
    results.render()  # Render bounding boxes on the image
    output_image = Image.fromarray(results.imgs[0])  # Convert to PIL image
    return output_image

# Create the Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil", label="Upload an Image"),  # Upload input as PIL Image
    outputs=gr.Image(type="pil", label="Predicted Image with Bounding Boxes"),  # Output image
    title="Object Detection App",
    description="Upload an image, and the YOLO model will detect objects in it."
)

# Launch the Gradio app
iface.launch()"""

from PIL import Image
import numpy as np
from ultralytics import YOLO
import gradio as gr

# Load the YOLO model
MODEL_URL = 'https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt'
model = YOLO(MODEL_URL)

# Define the prediction function
def predict(image):
    try:
        print("Received image:", type(image))  # Check the type of the received image
        results = model(image)  # Perform object detection using YOLO
        results.render()  # Render bounding boxes on the image
        
        output_image = Image.fromarray(results.imgs[0])  # Convert to PIL image
        
        print("Predicted image:", type(output_image))  # Ensure output is PIL Image
        return output_image
    except Exception as e:
        print("Error during prediction:", e)
        return None

# Create the Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil", label="Upload an Image"),  # Upload input as PIL Image
    outputs=gr.Image(type="pil", label="Predicted Image with Bounding Boxes"),  # Output image
    title="Object Detection App",
    description="Upload an image, and the YOLO model will detect objects in it."
)

# Launch the Gradio app
iface.launch()