Spaces:
Running
Running
File size: 14,959 Bytes
304227c c558e5e 304227c 30a5039 ed4644b 03261c8 c558e5e 304227c b952eb2 304227c b952eb2 304227c 3331389 304227c 3331389 304227c 3331389 304227c d7bcf16 304227c 7d01b03 32b7feb 9fc3b13 32b7feb 7d01b03 4f7cecf 30c6ca6 7089906 0711573 304227c 32b7feb 681acf9 32b7feb 681acf9 7d01b03 681acf9 32b7feb 681acf9 7d01b03 30c6ca6 56e3500 681acf9 56e3500 681acf9 9842be4 681acf9 56e3500 681acf9 74dc002 7d01b03 74dc002 d5e9f89 30c6ca6 7d01b03 4f7cecf 0711573 4f7cecf 7d01b03 30c6ca6 4f7cecf 7d01b03 30c6ca6 7089906 0711573 7089906 74dc002 4f7cecf 681acf9 304227c b952eb2 304227c 3331389 304227c 561b6c3 3331389 eb36747 e69ee39 eb36747 e69ee39 304227c eb36747 304227c 3331389 45b4425 2db28ae 3331389 2db28ae 03261c8 c558e5e 304227c c2dc7f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import os
import json
import re
from huggingface_hub import InferenceClient
import gradio as gr
from pydantic import BaseModel, Field
from typing import Optional, Literal
class PromptInput(BaseModel):
text: str = Field(..., description="The initial prompt text")
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"] = Field(..., description="Choice of meta prompt strategy")
class RefinementOutput(BaseModel):
query_analysis: Optional[str] = None
initial_prompt_evaluation: Optional[str] = None
refined_prompt: Optional[str] = None
explanation_of_refinements: Optional[str] = None
raw_content: Optional[str] = None
class PromptRefiner:
def __init__(self, api_token: str):
self.client = InferenceClient(token=api_token)
def refine_prompt(self, prompt_input: PromptInput) -> RefinementOutput:
if prompt_input.meta_prompt_choice == "morphosis":
selected_meta_prompt = original_meta_prompt
elif prompt_input.meta_prompt_choice == "verse":
selected_meta_prompt = new_meta_prompt
elif prompt_input.meta_prompt_choice == "physics":
selected_meta_prompt = metaprompt1
elif prompt_input.meta_prompt_choice == "bolism":
selected_meta_prompt = loic_metaprompt
elif prompt_input.meta_prompt_choice == "done":
selected_meta_prompt = metadone
elif prompt_input.meta_prompt_choice == "star":
selected_meta_prompt = echo_prompt_refiner
elif prompt_input.meta_prompt_choice == "math":
selected_meta_prompt = math_meta_prompt
elif prompt_input.meta_prompt_choice == "arpe":
selected_meta_prompt = autoregressive_metaprompt
else:
selected_meta_prompt = advanced_meta_prompt
messages = [
{"role": "system", "content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'},
{"role": "user", "content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)}
]
response = self.client.chat_completion(
model=prompt_refiner_model,
messages=messages,
max_tokens=2000,
temperature=0.8
)
response_content = response.choices[0].message.content.strip()
try:
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
if json_match:
json_str = json_match.group(1)
json_str = re.sub(r'\n\s*', ' ', json_str)
json_str = json_str.replace('"', '\\"')
json_output = json.loads(f'"{json_str}"')
if isinstance(json_output, str):
json_output = json.loads(json_output)
for key, value in json_output.items():
if isinstance(value, str):
json_output[key] = value.replace('\\"', '"')
return RefinementOutput(**json_output, raw_content=response_content)
else:
raise ValueError("No JSON found in the response")
except (json.JSONDecodeError, ValueError) as e:
print(f"Error parsing JSON: {e}")
print(f"Raw content: {response_content}")
output = {}
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
match = re.search(pattern, response_content, re.DOTALL)
if match:
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"')
else:
output[key] = ""
return RefinementOutput(**output, raw_content=response_content)
def apply_prompt(self, prompt: str, model: str) -> str:
try:
messages = [
{"role": "system", "content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections.Incorporate a variety of lists, headers, and text to make the answer visually appealing"},
{"role": "user", "content": prompt}
]
response = self.client.chat_completion(
model=model,
messages=messages,
max_tokens=2000,
temperature=0.8
)
output = response.choices[0].message.content.strip()
output = output.replace('\n\n', '\n').strip()
return output
except Exception as e:
return f"Error: {str(e)}"
class GradioInterface:
def __init__(self, prompt_refiner: PromptRefiner):
self.prompt_refiner = prompt_refiner
custom_css = """
.container {
border: 2px solid #2196F3;
border-radius: 10px;
padding: 20px;
margin: 15px;
background: white;
position: relative;
}
.container::before {
position: absolute;
top: -12px;
left: 20px;
background: white;
padding: 0 10px;
color: #2196F3;
font-weight: bold;
font-size: 1.2em;
}
.no-background > div:first-child {
border: none !important;
background: transparent !important;
box-shadow: none !important;
}
.title-container::before { content: ''; }
.input-container::before { content: 'PROMPT REFINEMENT'; }
.analysis-container::before { content: 'ANALYSIS & REFINEMENT'; }
.model-container::before { content: 'MODEL APPLICATION'; }
.results-container::before { content: 'RESULTS'; }
.examples-container::before { content: 'EXAMPLES'; }
.radio-group {
display: flex;
gap: 10px;
margin: 10px 0;
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
with gr.Column(elem_classes=["container", "title-container"]):
gr.Markdown("# PROMPT++")
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
gr.Markdown("Learn how to generate an improved version of your prompts.")
with gr.Column(elem_classes=["container", "input-container"]):
prompt_text = gr.Textbox(
label="Type the prompt (or let it empty to see metaprompt)",
elem_classes="no-background"
)
with gr.Accordion("Meta Prompt explanation", open=False):
gr.Markdown(explanation_markdown)
meta_prompt_choice = gr.Radio(
["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"],
label="Choose Meta Prompt",
value="star",
elem_classes=["no-background", "radio-group"]
)
refine_button = gr.Button("Refine Prompt")
with gr.Column(elem_classes=["container", "analysis-container"]):
gr.Markdown("### Initial prompt analysis")
analysis_evaluation = gr.Markdown()
gr.Markdown("### Refined Prompt")
refined_prompt = gr.Textbox(
interactive=False,
elem_classes="no-background"
)
gr.Markdown("### Explanation of Refinements")
explanation_of_refinements = gr.Markdown()
with gr.Accordion("Full Response JSON", open=False, visible=False):
full_response_json = gr.JSON()
with gr.Column(elem_classes=["container", "model-container"]):
gr.Markdown("## See MetaPrompt Impact")
with gr.Row():
apply_model = gr.Dropdown(
[
"Qwen/Qwen2.5-72B-Instruct",
"meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"HuggingFaceH4/zephyr-7b-alpha",
"meta-llama/Llama-2-7b-chat-hf",
"microsoft/Phi-3.5-mini-instruct"
],
value="meta-llama/Meta-Llama-3-70B-Instruct",
label="Choose the Model",
elem_classes="no-background"
)
apply_button = gr.Button("Apply MetaPrompt")
with gr.Column(elem_classes=["container", "results-container"]):
with gr.Tabs():
with gr.TabItem("Original Prompt Output"):
original_output = gr.Markdown()
with gr.TabItem("Refined Prompt Output"):
refined_output = gr.Markdown()
with gr.Column(elem_classes=["container", "examples-container"]):
with gr.Accordion("Examples", open=True):
gr.Examples(
examples=[
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
["Tell me about that guy who invented the light bulb", "physics"],
["Explain the universe.", "star"],
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
["List American presidents.", "verse"],
["Explain why the experiment failed.", "morphosis"],
["Is nuclear energy good?", "verse"],
["How does a computer work?", "phor"],
["How to make money fast?", "done"],
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
],
inputs=[prompt_text, meta_prompt_choice]
)
refine_button.click(
fn=self.refine_prompt,
inputs=[prompt_text, meta_prompt_choice],
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
)
apply_button.click(
fn=self.apply_prompts,
inputs=[prompt_text, refined_prompt, apply_model],
outputs=[original_output, refined_output]
)
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
result = self.prompt_refiner.refine_prompt(input_data)
analysis_evaluation = f"\n\n{result.initial_prompt_evaluation}"
return (
analysis_evaluation,
result.refined_prompt,
result.explanation_of_refinements,
result.dict()
)
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model)
return original_output, refined_output
def launch(self, share=False):
self.interface.launch(share=share)
metaprompt_explanations = {
"star": "Use ECHO when you need a comprehensive, multi-stage approach for complex prompts. It's ideal for tasks requiring in-depth analysis, exploration of multiple alternatives, and synthesis of ideas. Choose this over others when you have time for a thorough refinement process and need to consider various aspects of the prompt.",
"done": "Opt for this when you want a structured approach with emphasis on role-playing and advanced techniques. It's particularly useful for tasks that benefit from diverse perspectives and complex reasoning. Prefer this over 'physics' when you need a more detailed, step-by-step refinement process.",
"physics": "Select this when you need a balance between structure and advanced techniques, with a focus on role-playing. It's similar to 'done' but may be more suitable for scientific or technical prompts. Choose this over 'done' for a slightly less complex approach.",
"morphosis": "Use this simplified approach for straightforward prompts or when time is limited. It focuses on essential improvements without complex techniques. Prefer this over other methods when you need quick, clear refinements without extensive analysis.",
"verse": "Choose this method when you need to analyze and improve a prompt's strengths and weaknesses, with a focus on information flow. It's particularly useful for enhancing the logical structure of prompts. Use this over 'morphosis' when you need more depth but less complexity than 'star'.",
"phor": "Employ this advanced approach when you need to combine multiple prompt engineering techniques. It's ideal for complex tasks requiring both clarity and sophisticated prompting methods. Select this over 'star' when you want a more flexible, technique-focused approach.",
"bolism": "Utilize this method when working with autoregressive language models and when the task requires careful reasoning before conclusions. It's best for prompts that need detailed output formatting. Choose this over others when the prompt's structure and reasoning order are crucial."
}
explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])
if __name__ == '__main__':
meta_info=""
api_token = os.getenv('HF_API_TOKEN')
if not api_token:
raise ValueError("HF_API_TOKEN not found in environment variables")
metadone = os.getenv('metadone')
prompt_refiner_model = os.getenv('prompt_refiner_model')
echo_prompt_refiner = os.getenv('echo_prompt_refiner')
metaprompt1 = os.getenv('metaprompt1')
loic_metaprompt = os.getenv('loic_metaprompt')
openai_metaprompt = os.getenv('openai_metaprompt')
original_meta_prompt = os.getenv('original_meta_prompt')
new_meta_prompt = os.getenv('new_meta_prompt')
advanced_meta_prompt = os.getenv('advanced_meta_prompt')
math_meta_prompt = os.getenv('metamath')
autoregressive_metaprompt = os.getenv('autoregressive_metaprompt')
prompt_refiner = PromptRefiner(api_token)
gradio_interface = GradioInterface(prompt_refiner)
gradio_interface.launch(share=True) |