File size: 9,758 Bytes
b7bf6bb 5fee098 b7bf6bb 5fee098 b7bf6bb 966a6a5 792cabd b7bf6bb 792cabd b7bf6bb 792cabd b7bf6bb f27556c 792cabd f27556c 792cabd f27556c 0f94c51 f27556c 0f94c51 f27556c b7bf6bb f27556c b7bf6bb f27556c b7bf6bb f27556c 792cabd b7bf6bb f27556c b7bf6bb f27556c 792cabd b7bf6bb f27556c b7bf6bb f27556c b7bf6bb f27556c b7bf6bb 792cabd b7bf6bb 792cabd 0f94c51 b7bf6bb 3e5ad52 b7bf6bb 3e5ad52 b7bf6bb 3e5ad52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
from fastapi import FastAPI, BackgroundTasks
from contextlib import asynccontextmanager
from pymongo import MongoClient
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import joblib
import asyncio
import logging
import os
from datetime import datetime
# Configure logging to write only to console
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# MongoDB connection setup
db_name = 'property-listing'
collection_name = 'activities'
user_recommendation_collection_name = 'user_recommendation_collection'
connection_string = os.getenv('CONNECTION_STRING')
client = MongoClient(connection_string)
db = client[db_name]
collection = db[collection_name]
user_recommendation_collection = db[user_recommendation_collection_name]
# Load pre-trained SVD model and user-item matrix columns
svd = joblib.load('svd_model.joblib')
user_item_matrix_columns = joblib.load('all_columns.joblib')
item_factors = svd.components_.T
# Define the actions we're interested in
ALL_COLUMNS = ['nxt_img_listing', 'read_more_listing', 'nxt_img_detail', 'read_more_detail', 'time_spent']
# Global variables to store the latest session and recommendations
latest_session_id = None
latest_recommendations = None
async def check_for_new_session():
global latest_session_id, latest_recommendations
last_document_count = 0
while True:
try:
# Find the most recent document in the collection
latest_doc = collection.find_one(sort=[('timestamp', -1)])
current_document_count = collection.count_documents({})
if latest_doc:
if latest_doc['sessionId'] != latest_session_id or current_document_count > last_document_count:
latest_session_id = latest_doc['sessionId']
logger.info(f"New activity detected for session: {latest_session_id}")
latest_recommendations = generate_recommendations_for_session(latest_session_id)
if latest_recommendations:
logger.info(f"Generated recommendations for session {latest_session_id}: {latest_recommendations}")
else:
logger.warning(f"No recommendations generated for session {latest_session_id}")
last_document_count = current_document_count
else:
logger.info("No new activity detected")
else:
logger.warning("No documents found in the collection")
await asyncio.sleep(5) # Check every 5 seconds
except Exception as e:
logger.error(f"Error in check_for_new_session: {e}")
await asyncio.sleep(5) # Wait before retrying
def get_session_data(session_id):
try:
session_data = list(collection.find({'sessionId': session_id}))
if not session_data:
logger.warning(f"No data found for session {session_id}")
return None
raw_df = pd.DataFrame(session_data)
logger.debug(f"Columns in raw_df: {raw_df.columns.tolist()}")
required_columns = ['id', 'action']
missing_columns = [col for col in required_columns if col not in raw_df.columns]
if missing_columns:
logger.error(f"Missing required columns: {missing_columns}")
return None
return raw_df
except Exception as e:
logger.error(f"Error in get_session_data: {str(e)}")
return None
def create_pivot_table(raw_df):
try:
if 'duration' in raw_df.columns:
aggregated_data = raw_df.groupby(['id', 'action']).agg(
presence=('action', 'size'),
total_duration=('duration', 'sum')
).reset_index()
else:
aggregated_data = raw_df.groupby(['id', 'action']).agg(
presence=('action', 'size')
).reset_index()
pivot_columns = ['presence', 'total_duration'] if 'duration' in raw_df.columns else ['presence']
pivot_df = aggregated_data.pivot_table(
index=['id'],
columns='action',
values=pivot_columns,
fill_value=0
)
pivot_df.columns = ['_'.join(col).strip() for col in pivot_df.columns.values]
for col in ALL_COLUMNS:
if f'presence_{col}' not in pivot_df.columns and col != 'time_spent':
pivot_df[f'presence_{col}'] = 0
elif col == 'time_spent' and 'duration' in raw_df.columns and 'total_duration_time_spent' not in pivot_df.columns:
pivot_df['total_duration_time_spent'] = 0
return pivot_df
except Exception as e:
logger.error(f"Error in create_pivot_table: {str(e)}")
return None
def create_user_vector(pivot_df):
try:
pivot_df['interaction_score'] = pivot_df.apply(calculate_interaction_score, axis=1)
user_vector = pd.Series(index=user_item_matrix_columns, dtype=float).fillna(0)
for property_id, score in pivot_df['interaction_score'].items():
if property_id in user_vector.index:
user_vector[property_id] = score
return user_vector
except Exception as e:
logger.error(f"Error in create_user_vector: {str(e)}")
return None
def generate_recommendations(user_vector):
try:
user_vector_array = user_vector.values.reshape(1, -1)
user_latent = svd.transform(user_vector_array)
similarity_scores = cosine_similarity(user_latent, item_factors)
top_indices = similarity_scores.argsort()[0][-10:][::-1]
recommendations = user_item_matrix_columns[top_indices].tolist()
return recommendations
except Exception as e:
logger.error(f"Error in generate_recommendations: {str(e)}")
return None
def generate_recommendations_for_session(session_id):
try:
raw_df = get_session_data(session_id)
if raw_df is None:
return None
pivot_df = create_pivot_table(raw_df)
if pivot_df is None:
return None
user_vector = create_user_vector(pivot_df)
if user_vector is None:
return None
recommendations = generate_recommendations(user_vector)
# Check if recommendations already exist for the session
existing_recommendations = user_recommendation_collection.find_one({"sessionId": session_id})
if existing_recommendations:
# Compare the existing recommendations with the new recommendations
if existing_recommendations["recommendations"] != recommendations:
# Update the recommendations if they are different
recommendation_data = {
"sessionId": session_id,
"recommendations": recommendations,
"timestamp": datetime.now()
}
user_recommendation_collection.update_one(
{"sessionId": session_id},
{"$set": recommendation_data}
)
logger.info(f"Updated recommendations for session {session_id}: {recommendations}")
else:
logger.info(f"Recommendations for session {session_id} remain unchanged")
else:
# Save the recommendations if they don't exist for the session
recommendation_data = {
"sessionId": session_id,
"recommendations": recommendations,
"timestamp": datetime.now()
}
user_recommendation_collection.insert_one(recommendation_data)
logger.info(f"Saved recommendations for session {session_id}: {recommendations}")
return recommendations
except Exception as e:
logger.error(f"Error in generate_recommendations_for_session: {str(e)}")
return None
def calculate_interaction_score(row):
try:
# Calculate the score based on the presence of different actions
score = (
row.get('presence_nxt_img_listing', 0) * 1 +
row.get('presence_read_more_listing', 0) * 2 +
row.get('presence_nxt_img_detail', 0) * 3 +
row.get('presence_read_more_detail', 0) * 4 +
row.get('total_duration_time_spent', 0) / 10
)
# Apply bounce penalty if the session duration is less than 15 seconds
if 'total_duration_time_spent' in row and row['total_duration_time_spent'] < 15:
score -= 10
return score
except Exception as e:
logger.error(f"Error in calculate_interaction_score: {e}")
return 0
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup: create background task
task = asyncio.create_task(check_for_new_session())
yield
# Shutdown: cancel background task
task.cancel()
try:
await task
except asyncio.CancelledError:
logger.info("Background task cancelled")
# Create FastAPI application instance
app = FastAPI(lifespan=lifespan)
@app.get("/")
async def root():
return {"message": "Welcome to the Rec API"}
@app.get("/recommendations")
async def get_recommendations():
"""
API endpoint to get the latest recommendations.
Returns:
list: An array of recommended property IDs, or an empty array if no recommendations are available.
"""
if latest_recommendations:
logger.info(f"Returning recommendations: {latest_recommendations}")
return latest_recommendations
else:
logger.info("No recommendations available")
return []
|