File size: 9,758 Bytes
b7bf6bb
 
 
 
 
 
 
 
 
 
 
 
5fee098
b7bf6bb
5fee098
b7bf6bb
 
 
 
 
966a6a5
792cabd
b7bf6bb
 
 
 
 
792cabd
b7bf6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792cabd
b7bf6bb
 
 
 
 
 
 
f27556c
792cabd
f27556c
 
 
 
 
 
792cabd
 
 
 
 
 
 
 
f27556c
 
 
 
 
 
 
 
 
 
 
0f94c51
 
 
f27556c
0f94c51
 
f27556c
b7bf6bb
f27556c
b7bf6bb
 
 
f27556c
b7bf6bb
f27556c
792cabd
 
 
 
 
 
 
 
b7bf6bb
f27556c
b7bf6bb
 
 
 
f27556c
792cabd
 
 
 
 
 
 
 
b7bf6bb
 
f27556c
b7bf6bb
 
 
f27556c
b7bf6bb
f27556c
b7bf6bb
792cabd
b7bf6bb
 
792cabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f94c51
b7bf6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5ad52
 
 
 
 
b7bf6bb
3e5ad52
 
b7bf6bb
3e5ad52
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from fastapi import FastAPI, BackgroundTasks
from contextlib import asynccontextmanager
from pymongo import MongoClient
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import joblib
import asyncio
import logging
import os
from datetime import datetime

# Configure logging to write only to console
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

logger = logging.getLogger(__name__)

# MongoDB connection setup
db_name = 'property-listing'
collection_name = 'activities'
user_recommendation_collection_name = 'user_recommendation_collection'
connection_string = os.getenv('CONNECTION_STRING')

client = MongoClient(connection_string)
db = client[db_name]
collection = db[collection_name]
user_recommendation_collection = db[user_recommendation_collection_name]

# Load pre-trained SVD model and user-item matrix columns
svd = joblib.load('svd_model.joblib')
user_item_matrix_columns = joblib.load('all_columns.joblib')
item_factors = svd.components_.T

# Define the actions we're interested in
ALL_COLUMNS = ['nxt_img_listing', 'read_more_listing', 'nxt_img_detail', 'read_more_detail', 'time_spent']

# Global variables to store the latest session and recommendations
latest_session_id = None
latest_recommendations = None

async def check_for_new_session():
    global latest_session_id, latest_recommendations
    last_document_count = 0
    while True:
        try:
            # Find the most recent document in the collection
            latest_doc = collection.find_one(sort=[('timestamp', -1)])
            current_document_count = collection.count_documents({})
            
            if latest_doc:
                if latest_doc['sessionId'] != latest_session_id or current_document_count > last_document_count:
                    latest_session_id = latest_doc['sessionId']
                    logger.info(f"New activity detected for session: {latest_session_id}")
                    latest_recommendations = generate_recommendations_for_session(latest_session_id)
                    if latest_recommendations:
                        logger.info(f"Generated recommendations for session {latest_session_id}: {latest_recommendations}")
                    else:
                        logger.warning(f"No recommendations generated for session {latest_session_id}")
                    last_document_count = current_document_count
                else:
                    logger.info("No new activity detected")
            else:
                logger.warning("No documents found in the collection")
            
            await asyncio.sleep(5)  # Check every 5 seconds
        except Exception as e:
            logger.error(f"Error in check_for_new_session: {e}")
            await asyncio.sleep(5)  # Wait before retrying

def get_session_data(session_id):
    try:
        session_data = list(collection.find({'sessionId': session_id}))
        if not session_data:
            logger.warning(f"No data found for session {session_id}")
            return None

        raw_df = pd.DataFrame(session_data)
        logger.debug(f"Columns in raw_df: {raw_df.columns.tolist()}")

        required_columns = ['id', 'action']
        missing_columns = [col for col in required_columns if col not in raw_df.columns]
        if missing_columns:
            logger.error(f"Missing required columns: {missing_columns}")
            return None

        return raw_df

    except Exception as e:
        logger.error(f"Error in get_session_data: {str(e)}")
        return None

def create_pivot_table(raw_df):
    try:
        if 'duration' in raw_df.columns:
            aggregated_data = raw_df.groupby(['id', 'action']).agg(
                presence=('action', 'size'),
                total_duration=('duration', 'sum')
            ).reset_index()
        else:
            aggregated_data = raw_df.groupby(['id', 'action']).agg(
                presence=('action', 'size')
            ).reset_index()

        pivot_columns = ['presence', 'total_duration'] if 'duration' in raw_df.columns else ['presence']
        pivot_df = aggregated_data.pivot_table(
            index=['id'],
            columns='action',
            values=pivot_columns,
            fill_value=0
        )

        pivot_df.columns = ['_'.join(col).strip() for col in pivot_df.columns.values]

        for col in ALL_COLUMNS:
            if f'presence_{col}' not in pivot_df.columns and col != 'time_spent':
                pivot_df[f'presence_{col}'] = 0
            elif col == 'time_spent' and 'duration' in raw_df.columns and 'total_duration_time_spent' not in pivot_df.columns:
                pivot_df['total_duration_time_spent'] = 0

        return pivot_df

    except Exception as e:
        logger.error(f"Error in create_pivot_table: {str(e)}")
        return None

def create_user_vector(pivot_df):
    try:
        pivot_df['interaction_score'] = pivot_df.apply(calculate_interaction_score, axis=1)

        user_vector = pd.Series(index=user_item_matrix_columns, dtype=float).fillna(0)
        for property_id, score in pivot_df['interaction_score'].items():
            if property_id in user_vector.index:
                user_vector[property_id] = score

        return user_vector

    except Exception as e:
        logger.error(f"Error in create_user_vector: {str(e)}")
        return None

def generate_recommendations(user_vector):
    try:
        user_vector_array = user_vector.values.reshape(1, -1)
        user_latent = svd.transform(user_vector_array)

        similarity_scores = cosine_similarity(user_latent, item_factors)
        top_indices = similarity_scores.argsort()[0][-10:][::-1]
        recommendations = user_item_matrix_columns[top_indices].tolist()

        return recommendations

    except Exception as e:
        logger.error(f"Error in generate_recommendations: {str(e)}")
        return None

def generate_recommendations_for_session(session_id):
    try:
        raw_df = get_session_data(session_id)
        if raw_df is None:
            return None

        pivot_df = create_pivot_table(raw_df)
        if pivot_df is None:
            return None

        user_vector = create_user_vector(pivot_df)
        if user_vector is None:
            return None

        recommendations = generate_recommendations(user_vector)

        # Check if recommendations already exist for the session
        existing_recommendations = user_recommendation_collection.find_one({"sessionId": session_id})
        
        if existing_recommendations:
            # Compare the existing recommendations with the new recommendations
            if existing_recommendations["recommendations"] != recommendations:
                # Update the recommendations if they are different
                recommendation_data = {
                    "sessionId": session_id,
                    "recommendations": recommendations,
                    "timestamp": datetime.now()
                }
                user_recommendation_collection.update_one(
                    {"sessionId": session_id},
                    {"$set": recommendation_data}
                )
                logger.info(f"Updated recommendations for session {session_id}: {recommendations}")
            else:
                logger.info(f"Recommendations for session {session_id} remain unchanged")
        else:
            # Save the recommendations if they don't exist for the session
            recommendation_data = {
                "sessionId": session_id,
                "recommendations": recommendations,
                "timestamp": datetime.now()
            }
            user_recommendation_collection.insert_one(recommendation_data)
            logger.info(f"Saved recommendations for session {session_id}: {recommendations}")

        return recommendations

    except Exception as e:
        logger.error(f"Error in generate_recommendations_for_session: {str(e)}")
        return None

def calculate_interaction_score(row):
    try:
        # Calculate the score based on the presence of different actions
        score = (
            row.get('presence_nxt_img_listing', 0) * 1 +
            row.get('presence_read_more_listing', 0) * 2 +
            row.get('presence_nxt_img_detail', 0) * 3 +
            row.get('presence_read_more_detail', 0) * 4 +
            row.get('total_duration_time_spent', 0) / 10
        )
        
        # Apply bounce penalty if the session duration is less than 15 seconds
        if 'total_duration_time_spent' in row and row['total_duration_time_spent'] < 15:
            score -= 10
        
        return score
    except Exception as e:
        logger.error(f"Error in calculate_interaction_score: {e}")
        return 0

@asynccontextmanager
async def lifespan(app: FastAPI):
    # Startup: create background task
    task = asyncio.create_task(check_for_new_session())
    yield
    # Shutdown: cancel background task
    task.cancel()
    try:
        await task
    except asyncio.CancelledError:
        logger.info("Background task cancelled")

# Create FastAPI application instance
app = FastAPI(lifespan=lifespan)

@app.get("/")
async def root():
    return {"message": "Welcome to the Rec API"}

@app.get("/recommendations")
async def get_recommendations():
    """
    API endpoint to get the latest recommendations.
    Returns:
    list: An array of recommended property IDs, or an empty array if no recommendations are available.
    """
    if latest_recommendations:
        logger.info(f"Returning recommendations: {latest_recommendations}")
        return latest_recommendations
    else:
        logger.info("No recommendations available")
        return []