File size: 11,938 Bytes
7625d6b c8d430c b4ff37d 030bf70 b4ff37d 7625d6b a444494 030bf70 7625d6b b4ff37d a444494 b4ff37d a444494 803e48a 030bf70 17025e8 803e48a c8d430c b4ff37d 17025e8 7625d6b b4ff37d 030bf70 17025e8 030bf70 b4ff37d 030bf70 17025e8 030bf70 17025e8 c8d430c 17025e8 b4ff37d 7625d6b b4ff37d a444494 b4ff37d 803e48a 17025e8 803e48a b1de9b2 803e48a 7625d6b 030bf70 7625d6b 030bf70 b4ff37d 17025e8 7625d6b 030bf70 17025e8 b4ff37d 17025e8 030bf70 b4ff37d 7625d6b b4ff37d 7625d6b b4ff37d 17025e8 b4ff37d a444494 b4ff37d 030bf70 b4ff37d e53bd9c 7625d6b b4ff37d 7625d6b b4ff37d e53bd9c b4ff37d 7625d6b b4ff37d c8d430c b4ff37d 030bf70 b4ff37d c8d430c b4ff37d 7625d6b b4ff37d 030bf70 a444494 b4ff37d 7625d6b a444494 030bf70 a444494 b4ff37d 030bf70 17025e8 94dc8bb b4ff37d 7625d6b a444494 030bf70 a444494 7625d6b b4ff37d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# import os
# import gradio as gr
# from transformers import AutoModelForCausalLM, AutoTokenizer
# import torch
# from typing import List, Dict
# import logging
# # Set up logging to help us debug model loading and inference
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# class MedicalAssistant:
# def __init__(self):
# """Initialize the medical assistant with model and tokenizer"""
# try:
# logger.info("Starting model initialization...")
# # Model configuration - adjust these based on your available compute
# self.model_name = "mradermacher/Llama3-Med42-8B-GGUF"
# self.max_length = 1048
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
# logger.info(f"Using device: {self.device}")
# # Load tokenizer first - this is typically faster and can catch issues early
# logger.info("Loading tokenizer...")
# self.tokenizer = AutoTokenizer.from_pretrained(
# self.model_name,
# padding_side="left",
# trust_remote_code=True
# )
# # Set padding token if not set
# if self.tokenizer.pad_token is None:
# self.tokenizer.pad_token = self.tokenizer.eos_token
# # Load model with memory optimizations
# logger.info("Loading model...")
# self.model = AutoModelForCausalLM.from_pretrained(
# self.model_name,
# torch_dtype=torch.float16,
# device_map="auto",
# load_in_8bit=True,
# trust_remote_code=True
# )
# logger.info("Model initialization completed successfully!")
# except Exception as e:
# logger.error(f"Error during initialization: {str(e)}")
# raise
# def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
# """Generate a response to the user's message"""
# try:
# # Prepare the prompt
# system_prompt = """You are a medical AI assistant. Respond to medical queries
# professionally and accurately. If you're unsure, always recommend consulting
# with a healthcare provider."""
# # Combine system prompt, chat history, and current message
# full_prompt = f"{system_prompt}\n\nUser: {message}\nAssistant:"
# # Tokenize input
# inputs = self.tokenizer(
# full_prompt,
# return_tensors="pt",
# padding=True,
# truncation=True,
# max_length=self.max_length
# ).to(self.device)
# # Generate response
# with torch.no_grad():
# outputs = self.model.generate(
# **inputs,
# max_new_tokens=512,
# do_sample=True,
# temperature=0.7,
# top_p=0.95,
# pad_token_id=self.tokenizer.pad_token_id,
# repetition_penalty=1.1
# )
# # Decode and clean up response
# response = self.tokenizer.decode(
# outputs[0],
# skip_special_tokens=True
# )
# # Extract just the assistant's response
# response = response.split("Assistant:")[-1].strip()
# return response
# except Exception as e:
# logger.error(f"Error during response generation: {str(e)}")
# return f"I apologize, but I encountered an error. Please try again."
# # Initialize the assistant
# assistant = None
# def initialize_assistant():
# """Initialize the assistant and handle any errors"""
# global assistant
# try:
# assistant = MedicalAssistant()
# return True
# except Exception as e:
# logger.error(f"Failed to initialize assistant: {str(e)}")
# return False
# def chat_response(message: str, history: List[Dict]):
# """Handle chat messages and return responses"""
# global assistant
# # Check if assistant is initialized
# if assistant is None:
# if not initialize_assistant():
# return "I apologize, but I'm currently unavailable. Please try again later."
# try:
# return assistant.generate_response(message, history)
# except Exception as e:
# logger.error(f"Error in chat response: {str(e)}")
# return "I encountered an error. Please try again."
# # Create Gradio interface
# demo = gr.ChatInterface(
# fn=chat_response,
# title="Medical Assistant (Test Version)",
# description="""This is a test version of the medical assistant.
# Please use it to verify basic functionality.""",
# examples=[
# "What are the symptoms of malaria?",
# "How can I prevent type 2 diabetes?",
# "What should I do for a mild headache?"
# ],
# # retry_btn=None,
# # undo_btn=None,
# # clear_btn="Clear"
# )
# # Launch the interface
# if __name__ == "__main__":
# demo.launch()
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
from typing import List, Dict
import logging
import traceback
# Set up logging to help us track what's happening
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class MedicalAssistant:
def __init__(self):
"""
Initialize the medical assistant with CPU-friendly settings.
We use a base model instead of a quantized version to ensure CPU compatibility.
"""
try:
logger.info("Starting model initialization...")
# Using a standard model instead of a 4-bit quantized version
# This model is larger but more compatible with CPU-only environments
self.model_name = "meta-llama/Llama-2-7b-chat-hf"
self.max_length = 2048
# First load the tokenizer as it's lighter on memory
logger.info("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
token=os.getenv('HUGGING_FACE_TOKEN'), # Add your token in Space settings
trust_remote_code=True
)
# Handle padding token
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info("Tokenizer loaded successfully")
# Load model with CPU-friendly settings
logger.info("Loading model - this may take a few minutes...")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
token=os.getenv('HUGGING_FACE_TOKEN'),
device_map="auto", # This will default to CPU if no GPU is available
torch_dtype=torch.float32, # Standard precision for CPU
low_cpu_mem_usage=True, # Optimize memory usage
offload_folder="offload" # Enable disk offloading for memory management
)
# Move model explicitly to CPU and clear any GPU memory
self.model = self.model.to('cpu')
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("Model loaded successfully!")
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
logger.error(traceback.format_exc())
raise
def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
"""
Generate a response directly using the model instead of a pipeline.
This gives us more control over the generation process.
"""
try:
logger.info("Preparing message for generation")
# Create a medical context-aware prompt
system_prompt = """You are a medical AI assistant. Provide accurate,
professional medical guidance. Always recommend consulting healthcare
providers for specific medical advice."""
# Format the conversation
prompt = f"{system_prompt}\n\nUser: {message}\nAssistant:"
# Tokenize the input
inputs = self.tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=self.max_length
).to('cpu') # Ensure inputs are on CPU
logger.info("Generating response")
# Generate with conservative settings for CPU
with torch.no_grad(): # Disable gradient computation to save memory
outputs = self.model.generate(
**inputs,
max_new_tokens=256, # Reduced for CPU efficiency
do_sample=True,
temperature=0.7,
top_p=0.95,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=1.1
)
# Decode and clean up the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("Assistant:")[-1].strip()
logger.info("Response generated successfully")
return response
except Exception as e:
logger.error(f"Error during response generation: {str(e)}")
logger.error(traceback.format_exc())
return f"I apologize, but I encountered an error: {str(e)}"
# The rest of your code remains the same
assistant = None
def initialize_assistant():
"""Initialize the assistant with proper error handling"""
global assistant
try:
logger.info("Attempting to initialize assistant")
assistant = MedicalAssistant()
logger.info("Assistant initialized successfully")
return True
except Exception as e:
logger.error(f"Failed to initialize assistant: {str(e)}")
logger.error(traceback.format_exc())
return False
def chat_response(message: str, history: List[Dict]):
"""Handle chat interactions with error recovery"""
global assistant
if assistant is None:
logger.info("Assistant not initialized, attempting initialization")
if not initialize_assistant():
return "I apologize, but I'm currently unavailable. Please try again later."
try:
return assistant.generate_response(message, history)
except Exception as e:
logger.error(f"Error in chat response: {str(e)}")
logger.error(traceback.format_exc())
return f"I encountered an error: {str(e)}"
# Create the Gradio interface
demo = gr.ChatInterface(
fn=chat_response,
title="Medical Assistant (CPU Version)",
description="""This medical assistant provides guidance and information
about health-related queries. Please note that response
generation may take longer as this is running in CPU mode.""",
examples=[
"What are the symptoms of malaria?",
"How can I prevent type 2 diabetes?",
"What should I do for a mild headache?"
]
)
# Launch the interface
if __name__ == "__main__":
logger.info("Starting the application")
demo.launch() |