File size: 11,644 Bytes
7625d6b c8d430c b4ff37d 030bf70 b4ff37d 7625d6b a444494 030bf70 7625d6b b4ff37d a444494 b4ff37d a444494 803e48a 4b15044 803e48a c8d430c b4ff37d 4b15044 7625d6b b4ff37d 4b15044 030bf70 4b15044 030bf70 4b15044 030bf70 4b15044 b4ff37d 7625d6b b4ff37d a444494 b4ff37d 803e48a 4b15044 803e48a b1de9b2 803e48a 7625d6b 030bf70 5edea36 4b15044 7625d6b 4b15044 b4ff37d 4b15044 17025e8 7625d6b 4b15044 b4ff37d 4b15044 b4ff37d 7625d6b b4ff37d 7625d6b b4ff37d 4b15044 b4ff37d a444494 b4ff37d 030bf70 b4ff37d e53bd9c 7625d6b b4ff37d 7625d6b b4ff37d e53bd9c b4ff37d 7625d6b b4ff37d c8d430c b4ff37d 030bf70 b4ff37d c8d430c b4ff37d 7625d6b b4ff37d 030bf70 a444494 b4ff37d 7625d6b a444494 030bf70 a444494 b4ff37d 5edea36 2c8b770 4b15044 94dc8bb b4ff37d 7625d6b a444494 030bf70 a444494 7625d6b b4ff37d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# import os
# import gradio as gr
# from transformers import AutoModelForCausalLM, AutoTokenizer
# import torch
# from typing import List, Dict
# import logging
# # Set up logging to help us debug model loading and inference
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# class MedicalAssistant:
# def __init__(self):
# """Initialize the medical assistant with model and tokenizer"""
# try:
# logger.info("Starting model initialization...")
# # Model configuration - adjust these based on your available compute
# self.model_name = "mradermacher/Llama3-Med42-8B-GGUF"
# self.max_length = 1048
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
# logger.info(f"Using device: {self.device}")
# # Load tokenizer first - this is typically faster and can catch issues early
# logger.info("Loading tokenizer...")
# self.tokenizer = AutoTokenizer.from_pretrained(
# self.model_name,
# padding_side="left",
# trust_remote_code=True
# )
# # Set padding token if not set
# if self.tokenizer.pad_token is None:
# self.tokenizer.pad_token = self.tokenizer.eos_token
# # Load model with memory optimizations
# logger.info("Loading model...")
# self.model = AutoModelForCausalLM.from_pretrained(
# self.model_name,
# torch_dtype=torch.float16,
# device_map="auto",
# load_in_8bit=True,
# trust_remote_code=True
# )
# logger.info("Model initialization completed successfully!")
# except Exception as e:
# logger.error(f"Error during initialization: {str(e)}")
# raise
# def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
# """Generate a response to the user's message"""
# try:
# # Prepare the prompt
# system_prompt = """You are a medical AI assistant. Respond to medical queries
# professionally and accurately. If you're unsure, always recommend consulting
# with a healthcare provider."""
# # Combine system prompt, chat history, and current message
# full_prompt = f"{system_prompt}\n\nUser: {message}\nAssistant:"
# # Tokenize input
# inputs = self.tokenizer(
# full_prompt,
# return_tensors="pt",
# padding=True,
# truncation=True,
# max_length=self.max_length
# ).to(self.device)
# # Generate response
# with torch.no_grad():
# outputs = self.model.generate(
# **inputs,
# max_new_tokens=512,
# do_sample=True,
# temperature=0.7,
# top_p=0.95,
# pad_token_id=self.tokenizer.pad_token_id,
# repetition_penalty=1.1
# )
# # Decode and clean up response
# response = self.tokenizer.decode(
# outputs[0],
# skip_special_tokens=True
# )
# # Extract just the assistant's response
# response = response.split("Assistant:")[-1].strip()
# return response
# except Exception as e:
# logger.error(f"Error during response generation: {str(e)}")
# return f"I apologize, but I encountered an error. Please try again."
# # Initialize the assistant
# assistant = None
# def initialize_assistant():
# """Initialize the assistant and handle any errors"""
# global assistant
# try:
# assistant = MedicalAssistant()
# return True
# except Exception as e:
# logger.error(f"Failed to initialize assistant: {str(e)}")
# return False
# def chat_response(message: str, history: List[Dict]):
# """Handle chat messages and return responses"""
# global assistant
# # Check if assistant is initialized
# if assistant is None:
# if not initialize_assistant():
# return "I apologize, but I'm currently unavailable. Please try again later."
# try:
# return assistant.generate_response(message, history)
# except Exception as e:
# logger.error(f"Error in chat response: {str(e)}")
# return "I encountered an error. Please try again."
# # Create Gradio interface
# demo = gr.ChatInterface(
# fn=chat_response,
# title="Medical Assistant (Test Version)",
# description="""This is a test version of the medical assistant.
# Please use it to verify basic functionality.""",
# examples=[
# "What are the symptoms of malaria?",
# "How can I prevent type 2 diabetes?",
# "What should I do for a mild headache?"
# ],
# # retry_btn=None,
# # undo_btn=None,
# # clear_btn="Clear"
# )
# # Launch the interface
# if __name__ == "__main__":
# demo.launch()
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
from typing import List, Dict
import logging
import traceback
# Set up logging to help us track what's happening
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class MedicalAssistant:
def __init__(self):
"""
Initialize the medical assistant with the Llama3-Med42 model.
This model is specifically trained on medical data and quantized to 4-bit precision
for better memory efficiency while maintaining good performance.
"""
try:
logger.info("Starting model initialization...")
# Updated model to use Llama3-Med42
self.model_name = "emircanerol/Llama3-Med42-8B-4bit"
self.max_length = 2048
# Initialize the pipeline for simplified text generation
# The pipeline handles tokenizer and model loading automatically
logger.info("Initializing pipeline...")
self.pipe = pipeline(
"text-generation",
model=self.model_name,
token=os.getenv('HUGGING_FACE_TOKEN'),
device_map="auto",
torch_dtype=torch.float16, # Use half precision for 4-bit model
load_in_4bit=True # Enable 4-bit quantization
)
# Load tokenizer separately for more control over text processing
logger.info("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
token=os.getenv('HUGGING_FACE_TOKEN'),
trust_remote_code=True
)
# Ensure proper padding token configuration
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info("Medical Assistant initialized successfully!")
except Exception as e:
logger.error(f"Initialization failed: {str(e)}")
logger.error(traceback.format_exc())
raise
def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
"""
Generate a response using the Llama3-Med42 pipeline.
This method formats the conversation history and generates appropriate medical responses.
"""
try:
logger.info("Preparing message for generation")
# Create a medical context-aware prompt
system_prompt = """You are a medical AI assistant based on Llama3,
specifically trained on medical knowledge. Provide accurate, professional
medical guidance while acknowledging limitations. Always recommend
consulting healthcare providers for specific medical advice."""
# Format the conversation for the model
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
]
# Add chat history if available
if chat_history:
for chat in chat_history:
messages.append({
"role": "user" if chat["role"] == "user" else "assistant",
"content": chat["content"]
})
logger.info("Generating response")
# Generate response using the pipeline
response = self.pipe(
messages,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1
)[0]["generated_text"]
# Clean up the response by extracting the last assistant message
response = response.split("assistant:")[-1].strip()
logger.info("Response generated successfully")
return response
except Exception as e:
logger.error(f"Error during response generation: {str(e)}")
logger.error(traceback.format_exc())
return f"I apologize, but I encountered an error: {str(e)}"
# Initialize the assistant
assistant = None
def initialize_assistant():
"""Initialize the assistant with proper error handling"""
global assistant
try:
logger.info("Attempting to initialize assistant")
assistant = MedicalAssistant()
logger.info("Assistant initialized successfully")
return True
except Exception as e:
logger.error(f"Failed to initialize assistant: {str(e)}")
logger.error(traceback.format_exc())
return False
def chat_response(message: str, history: List[Dict]):
"""Handle chat interactions with error recovery"""
global assistant
if assistant is None:
logger.info("Assistant not initialized, attempting initialization")
if not initialize_assistant():
return "I apologize, but I'm currently unavailable. Please try again later."
try:
return assistant.generate_response(message, history)
except Exception as e:
logger.error(f"Error in chat response: {str(e)}")
logger.error(traceback.format_exc())
return f"I encountered an error: {str(e)}"
# Create the Gradio interface
demo = gr.ChatInterface(
fn=chat_response,
title="Medical Assistant (NURSEOGE)",
description="""This medical assistant is powered by NURSEOGE,
a model specifically trained on medical knowledge. It provides
guidance and information about health-related queries while
maintaining professional medical standards.""",
examples=[
"What are the symptoms of malaria?",
"How can I prevent type 2 diabetes?",
"What should I do for a mild headache?"
]
)
# Launch the interface
if __name__ == "__main__":
logger.info("Starting the application")
demo.launch() |