File size: 8,196 Bytes
4ff2d98
 
 
 
a7d8a51
4ff2d98
a7d8a51
4ff2d98
a7d8a51
df64ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a97078
df64ccd
 
 
5a97078
df64ccd
 
 
4ff2d98
df64ccd
 
85fb5cc
a7d8a51
df64ccd
 
 
 
a7d8a51
4ff2d98
df64ccd
4ff2d98
df64ccd
 
 
 
 
 
 
 
 
67624c1
4ff2d98
df64ccd
 
 
 
 
 
 
67624c1
 
 
 
 
 
 
 
 
 
5a97078
 
67624c1
 
 
 
 
4ff2d98
23e7cbd
df64ccd
 
 
 
 
 
 
 
5a97078
df64ccd
 
 
 
 
 
 
 
23e7cbd
a7d8a51
df64ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67624c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import streamlit as st
from langchain import memory as lc_memory
from langsmith import Client
from streamlit_feedback import streamlit_feedback
from utils import get_expression_chain, retriever, get_embeddings, create_qdrant_collection
from langchain_core.tracers.context import collect_runs
from qdrant_client import QdrantClient
from dotenv import load_dotenv
import os
if "access_granted" not in st.session_state:
    st.session_state.access_granted = False
if "profile" not in st.session_state:
    st.session_state.profile = None
if "name" not in st.session_state:
    st.session_state.name = None
if not st.session_state.access_granted:
    # Profile input section
    st.title("User Profile")
    name = st.text_input("Name")
    profile_selector = st.selectbox("Profile", options=["Student", "Professor", "Administrator", "Other"])

    if profile_selector == "Other":
        profile = st.text_input("What is your role?")
    else:
        profile = profile_selector

    if profile and name:
        d = False
    else:
        d = True

    submission = st.button("Submit", disabled=d)

    if submission:
        st.session_state.profile = profile
        st.session_state.name = name
        st.session_state.access_granted = True  # Grant access to main app
        st.rerun()  # Reload the app
else:
    load_dotenv()
    profile = st.session_state.profile
    client = Client()
    qdrant_api=os.getenv("QDRANT_API_KEY")
    qdrant_url=os.getenv("QDRANT_URL")
    qdrant_client = QdrantClient(qdrant_url ,api_key=qdrant_api)
    st.set_page_config(page_title = "SUP'ASSISTANT")
    st.subheader(f"Hello {st.session_state.name}! How can I help you today!")

    memory = lc_memory.ConversationBufferMemory(
        chat_memory=lc_memory.StreamlitChatMessageHistory(key="langchain_messages"),
        return_messages=True,
        memory_key="chat_history",
    )
    st.sidebar.markdown("## Feedback Scale")
    feedback_option = (
        "thumbs" if st.sidebar.toggle(label="`Faces` ⇄ `Thumbs`", value=False) else "faces"
    )

    with st.sidebar:
        temp = st.slider("**Temperature**", min_value=0.0, max_value=1.0, step=0.001)
        n_docs = st.number_input("**Number of retireved documents**", min_value=0, max_value=10, value=5, step=1)

    if st.sidebar.button("Clear message history"):
        print("Clearing message history")
        memory.clear()

    retriever = retriever(n_docs=n_docs)
    # Create Chain
    chain = get_expression_chain(retriever,"llama-3.3-70b-versatile",temp)

    for msg in st.session_state.langchain_messages:
        avatar = "🦜" if msg.type == "ai" else None
        with st.chat_message(msg.type, avatar=avatar):
            st.markdown(msg.content)


    prompt = st.chat_input(placeholder="What do you need to know about SUP'COM ?")

    if prompt :
        with st.chat_message("user"):
            st.write(prompt)
        
        with st.chat_message("assistant", avatar="🦜"):
            message_placeholder = st.empty()
            full_response = ""
            # Define the basic input structure for the chains
            input_dict = {"input": prompt.lower()}
            used_docs = retriever.get_relevant_documents(prompt.lower())

            with collect_runs() as cb:
                for chunk in chain.stream(input_dict, config={"tags": ["SUP'ASSISTANT"]}):
                    full_response += chunk.content
                    message_placeholder.markdown(full_response + "β–Œ")
                memory.save_context(input_dict, {"output": full_response})
                st.session_state.run_id = cb.traced_runs[0].id
            message_placeholder.markdown(full_response)
            if used_docs :
                docs_content = "\n\n".join(
                                        [
                                            f"Doc {i+1}:\n"
                                            f"Source: {doc.metadata['source']}\n"
                                            f"Title: {doc.metadata['title']}\n"
                                            f"Content: {doc.page_content}\n"
                                            for i, doc in enumerate(used_docs)
                                        ]
                                    )
                with st.sidebar:
                    st.download_button(
                    label="Consulted Documents",
                    data=docs_content,
                    file_name="Consulted_documents.txt",
                    mime="text/plain",
                )

            with st.spinner("Just a sec! Dont enter prompts while loading pelase!"):
                run_id = st.session_state.run_id
                question_embedding = get_embeddings(prompt)
                answer_embedding = get_embeddings(full_response)
                # Add question and answer to Qdrant
                qdrant_client.upload_collection(            
                    collection_name="chat-history",
                    payload=[
                        {"text": prompt, "type": "question", "question_ID": run_id},
                        {"text": full_response, "type": "answer", "question_ID": run_id, "used_docs":used_docs}
                    ],
                    vectors=[
                        question_embedding,
                        answer_embedding,
                    ],
                    parallel=4,
                    max_retries=3,
                    )

            

    if st.session_state.get("run_id"):
        run_id = st.session_state.run_id
        feedback = streamlit_feedback(
            feedback_type=feedback_option,
            optional_text_label="[Optional] Please provide an explanation",
            key=f"feedback_{run_id}",
        )

        # Define score mappings for both "thumbs" and "faces" feedback systems
        score_mappings = {
            "thumbs": {"πŸ‘": 1, "πŸ‘Ž": 0},
            "faces": {"πŸ˜€": 1, "πŸ™‚": 0.75, "😐": 0.5, "πŸ™": 0.25, "😞": 0},
        }

        # Get the score mapping based on the selected feedback option
        scores = score_mappings[feedback_option]

        if feedback:
            # Get the score from the selected feedback option's score mapping
            score = scores.get(feedback["score"])

            if score is not None:
                # Formulate feedback type string incorporating the feedback option
                # and score value
                feedback_type_str = f"{feedback_option} {feedback['score']}"

                # Record the feedback with the formulated feedback type string
                # and optional comment
                with st.spinner("Just a sec! Dont enter prompts while loading pelase!"):
                    feedback_record = client.create_feedback(
                        run_id,
                        feedback_type_str,
                        score=score,
                        comment=feedback.get("text"),
                        source_info={"profile":profile}
                    )
                    st.session_state.feedback = {
                        "feedback_id": str(feedback_record.id),
                        "score": score,
                    }
            else:
                st.warning("Invalid feedback score.")

            with st.spinner("Just a sec! Dont enter prompts while loading pelase!"):
                if feedback.get("text"):
                    comment = feedback.get("text")
                    feedback_embedding = get_embeddings(comment)
                else:
                    comment = "no comment"
                    feedback_embedding = get_embeddings(comment)

                
                qdrant_client.upload_collection(            
                    collection_name="chat-history",
                    payload=[
                        {"text": comment,
                         "Score:":score, 
                         "type": "feedback", 
                         "question_ID": run_id, 
                         "User_profile":profile}
                    ],
                    vectors=[
                        feedback_embedding
                    ],
                    parallel=4,
                    max_retries=3,
                    )