Spaces:
Sleeping
Sleeping
File size: 10,230 Bytes
460fdc7 42e8f64 c40907d 2ec9b03 4f8bac4 2ec9b03 4f8bac4 2ec9b03 4f8bac4 0a8b643 4f8bac4 0a8b643 4f8bac4 0bcbe4f 78b788d 0a8b643 2af0c24 4f8bac4 4f3cfa8 4f8bac4 0a8b643 4f8bac4 0a8b643 4f8bac4 dae3ac5 0a8b643 dae3ac5 0a8b643 e5599c2 f7b4006 0bcbe4f 4f8bac4 0bcbe4f 0a8b643 2af0c24 4f8bac4 4f3cfa8 4f8bac4 0a8b643 2af0c24 0a8b643 4f8bac4 0a8b643 4f8bac4 0bcbe4f 0a8b643 0bcbe4f 0a8b643 0bcbe4f 4f8bac4 0a8b643 2ec9b03 0a8b643 2ec9b03 0a8b643 4f8bac4 0a8b643 2af0c24 4f8bac4 2ec9b03 0a8b643 2ec9b03 0bcbe4f 4f8bac4 0a8b643 4f8bac4 0bcbe4f 0a8b643 2af0c24 4f8bac4 2ec9b03 4f8bac4 0a8b643 2ec9b03 d4ded0a 4f8bac4 0a8b643 4567668 f7b4006 7022131 7786ff5 2ec9b03 4f8bac4 7786ff5 655d435 2ec9b03 4f8bac4 f7b4006 7022131 f7b4006 0a8b643 bb22059 b4c9d86 5966339 4f8bac4 7022131 f7b4006 2dc39dd b7b78a8 2dc39dd 097117b 4f8bac4 7022131 f7b4006 d4ded0a b7b78a8 d4ded0a 097117b 4f8bac4 7022131 f7b4006 2dc39dd 3e19f3e 2dc39dd 097117b 4f8bac4 3fe7e68 172dd94 3fe7e68 172dd94 4f8bac4 3fe7e68 e513088 3fe7e68 097117b 4f8bac4 3fe7e68 097117b 4f8bac4 3fe7e68 097117b 4f8bac4 3fe7e68 097117b 4f8bac4 7022131 f7b4006 2dc39dd b7b78a8 2dc39dd 097117b 4f8bac4 296b387 0bcbe4f e8159e6 0bcbe4f e8159e6 eb5bbd0 4f8bac4 40e7d39 4f8bac4 0a8b643 4f8bac4 0a8b643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import pandas as pd
import plotly.express as px
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard - February 2025},
year = {2025},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""
# List of tasks (CSV filenames)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
def format_stars(score):
try:
score_int = int(score)
except Exception:
score_int = 0
return f'<span style="color: #3fa45bff !important; font-size:2em !important;">{"★" * score_int}</span>'
def make_link(mname):
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'[{display_name}](https://huggingface.co/{mname})'
def get_plots(task):
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
fig = px.scatter(
df,
x="total_gpu_energy", # Ensure correct column for x-axis
y="Display Model", # Keep model name for y-axis
color="energy_score", # Ensure correct column for point color
custom_data=['energy_score'],
height=500,
width=800,
color_discrete_map=color_map
)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{y}",
"GPU Energy (Wh): %{x}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
return fig
def get_all_plots():
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
fig = px.scatter(
all_df,
x="total_gpu_energy", # Ensure correct column for x-axis
y="Display Model",
color="energy_score", # Ensure correct column for point color
custom_data=['energy_score'],
height=500,
width=800,
color_discrete_map=color_map
)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{y}",
"GPU Energy (Wh): %{x}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
return fig
def get_model_names(task):
"""
For a given task, load the energy CSV and return a dataframe with the following columns:
- Model (a markdown link)
- GPU Energy (Wh) formatted as a string with 4 decimal places
- Score (a star rating based on energy_score)
For text_generation.csv only, also add the "Class" column from the CSV.
The final column order is: Model, GPU Energy (Wh), Score, [Class].
"""
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
# Format the energy as a string with 4 decimals
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
if 'class' in df.columns:
df['Class'] = df['class']
df = df[['Model', 'GPU Energy (Wh)', 'Score', 'Class']]
else:
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
df = df.sort_values(by='GPU Energy (Wh)')
return df
def get_all_model_names():
"""
Combine data from all tasks and return a leaderboard table with:
- Model, GPU Energy (Wh), Score
Duplicate models are dropped.
"""
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
all_df = all_df.sort_values(by='GPU Energy (Wh)')
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
# Build the Gradio interface.
# The css argument below makes all tables (e.g. leaderboard) use a fixed layout with narrower columns.
demo = gr.Blocks(css="""
.gr-dataframe table {
table-layout: fixed;
width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
max-width: 150px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
""")
with demo:
gr.Markdown(
"""# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Click through the tasks below to see how different models measure up in terms of energy efficiency."""
)
gr.Markdown(
"""Test your own models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
)
with gr.Tabs():
with gr.TabItem("Text Generation 💬"):
with gr.Row():
with gr.Column(scale=1.3):
plot = gr.Plot(get_plots('text_generation.csv'))
with gr.Column(scale=1):
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
with gr.TabItem("Image Generation 📷"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_generation.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
with gr.TabItem("Text Classification 🎭"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('text_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
with gr.TabItem("Image Classification 🖼️"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
with gr.TabItem("Image Captioning 📝"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_captioning.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
with gr.TabItem("Summarization 📃"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('summarization.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
with gr.TabItem("Automatic Speech Recognition 💬"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('asr.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
with gr.TabItem("Object Detection 🚘"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('object_detection.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
with gr.TabItem("Sentence Similarity 📚"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('sentence_similarity.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
with gr.TabItem("Extractive QA ❔"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('question_answering.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
with gr.TabItem("All Tasks 💡"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_all_plots)
with gr.Column():
table = gr.Dataframe(get_all_model_names, datatype="markdown")
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown(
"""Last updated: February 2025"""
)
demo.launch() |