Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from sentence_transformers import SentenceTransformer | |
# Load SBERT model (choose a suitable model from https://www.sbert.net/docs/pretrained_models.html) | |
def load_sbert(): | |
model = SentenceTransformer('all-MiniLM-L6-v2') # Example model | |
return model | |
model = load_sbert() | |
def calculate_similarity(word1, word2): | |
embeddings1 = model.encode(word1) | |
embeddings2 = model.encode(word2) | |
# Convert NumPy arrays to tensors | |
embeddings1 = torch.tensor(embeddings1) | |
embeddings2 = torch.tensor(embeddings2) | |
cos_sim = torch.nn.functional.cosine_similarity(embeddings1, embeddings2, dim=0) | |
return cos_sim.item() | |
# Streamlit interface | |
st.title("Word Similarity Checker") | |
reference_word = st.text_input("Enter the reference word:") | |
word_list = st.text_area("Enter a list of words (one word per line):") | |
if st.button("Analyze"): | |
if reference_word and word_list: | |
words = word_list.splitlines() | |
for word in words: | |
similarity = calculate_similarity(reference_word, word) | |
st.write(f"Similarity between '{reference_word}' and '{word}': {similarity:.4f}") | |
else: | |
st.warning("Please enter a reference word and a list of words.") | |