Spaces:
Build error
Build error
File size: 2,696 Bytes
564ce0c 569a26f 564ce0c 8c32010 c2b8ffb 569a26f c2b8ffb 569a26f c2b8ffb 569a26f 9502681 015a0a7 9502681 9ddc9bf bc4e0d2 9ddc9bf bc4e0d2 23d1451 015a0a7 bc4e0d2 7c393ac c2b8ffb 569a26f c2b8ffb 569a26f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1
# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("## Introduction to the Knowledge Graph API")
st.write("---")
st.write("""
The Google Knowledge Graph API reveals entity information related to a keyword, that Google knows about.
This information can be very useful for SEO – discovering related topics and what Google believes is relevant.
It can also help when trying to claim/win a Knowledge Graph box on search results.
The API requires a high level of technical understanding, so this tool creates a simple public interface, with the ability to export data into spreadsheets.
""")
def sample_analyze_entities(text_content, your_query=""):
service_account_info = json.loads(st.secrets["google_nlp"])
credentials = service_account.Credentials.from_service_account_info(
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
client = language_v1.LanguageServiceClient(credentials=credentials)
type_ = language_v1.Document.Type.PLAIN_TEXT
language = "en"
document = {"content": text_content, "type_": type_, "language": language}
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
entities_list = []
for entity in response.entities:
entity_type_name = language_v1.Entity.Type(entity.type_).name
entity_details = {
"Name": entity.name,
"Type": entity_type_name,
"Salience Score": entity.salience,
"Metadata": entity.metadata,
"Mentions": [mention.text.content for mention in entity.mentions]
}
entities_list.append(entity_details)
if your_query:
st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**")
else:
st.write("### We found results for your query")
st.write("----")
for i, entity in enumerate(entities_list):
st.write(f"Relevance Score: {entity.get('Salience Score', 'N/A')} \t {i+1} of {len(entities_list)}")
for key, value in entity.items():
if value:
st.write(f"**{key}:**")
st.write(value)
st.write("----")
st.write(f"### Language of the text: {response.language}")
# User input for text analysis
user_input = st.text_area("Enter text to analyze")
your_query = st.text_input("Enter your query (optional)")
if st.button("Analyze"):
sample_analyze_entities(user_input, your_query)
|