Spaces:
Sleeping
Sleeping
File size: 3,325 Bytes
564ce0c 569a26f 564ce0c 8041b5b 564ce0c 8041b5b 8c32010 c2b8ffb 569a26f c2b8ffb 569a26f c2b8ffb 569a26f 9502681 015a0a7 8041b5b 015a0a7 9502681 9ddc9bf bc4e0d2 9ddc9bf bc4e0d2 23d1451 8041b5b 015a0a7 bc4e0d2 7c393ac c2b8ffb 569a26f c2b8ffb 569a26f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1
import requests
# Adding checkbox options for entity types
entity_types_to_show = ["PERSON", "ORGANIZATION", "EVENT"]
selected_types = st.multiselect('Select entity types to show:', entity_types_to_show)
# Function for querying Google Knowledge Graph API
def query_google_knowledge_graph(entity_name):
return {"info": "Knowledge Graph info for {}".format(entity_name)}
# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("## Introduction to the Knowledge Graph API")
st.write("---")
st.write("""
The Google Knowledge Graph API reveals entity information related to a keyword, that Google knows about.
This information can be very useful for SEO – discovering related topics and what Google believes is relevant.
It can also help when trying to claim/win a Knowledge Graph box on search results.
The API requires a high level of technical understanding, so this tool creates a simple public interface, with the ability to export data into spreadsheets.
""")
def sample_analyze_entities(text_content, your_query=""):
service_account_info = json.loads(st.secrets["google_nlp"])
credentials = service_account.Credentials.from_service_account_info(
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
client = language_v1.LanguageServiceClient(credentials=credentials)
type_ = language_v1.Document.Type.PLAIN_TEXT
language = "en"
document = {"content": text_content, "type_": type_, "language": language}
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
entities_list = []
for entity in response.entities:
entity_type_name = language_v1.Entity.Type(entity.type_).name
if entity_type_name in selected_types:
entity_details = {
"Name": entity.name,
"Type": entity_type_name,
"Salience Score": entity.salience,
"Metadata": entity.metadata,
"Mentions": [mention.text.content for mention in entity.mentions]
}
entities_list.append(entity_details)
if your_query:
st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**")
else:
st.write("### We found results for your query")
st.write("----")
for i, entity in enumerate(entities_list):
st.write(f"Relevance Score: {entity.get('Salience Score', 'N/A')} \t {i+1} of {len(entities_list)}")
for key, value in entity.items():
if value:
st.write(f"**{key}:**")
st.write(value)
# Query Google Knowledge Graph API for each entity
kg_info = query_google_knowledge_graph(entity['Name'])
st.write("### Google Knowledge Graph Information")
st.write(kg_info)
st.write("----")
st.write(f"### Language of the text: {response.language}")
# User input for text analysis
user_input = st.text_area("Enter text to analyze")
your_query = st.text_input("Enter your query (optional)")
if st.button("Analyze"):
sample_analyze_entities(user_input, your_query)
|