File size: 4,449 Bytes
564ce0c 569a26f 564ce0c 98b7999 8deafd3 e5f77a9 aa6444a e5f77a9 aa6444a ad1dcf0 3fec030 82bcffd 98b7999 82bcffd 98b7999 c077e58 170f624 c077e58 170f624 98b7999 c077e58 98b7999 3fec030 170f624 c077e58 170f624 c077e58 54723ff c077e58 3fec030 ad1dcf0 170f624 a95b8e3 170f624 d57d7e1 170f624 a95b8e3 ad1dcf0 2534d93 8deafd3 a95b8e3 0a35ca9 c226cf4 2be4187 0ca0300 a95b8e3 170f624 f66f708 98b7999 ad1dcf0 98b7999 c2b8ffb c99e844 569a26f c2b8ffb 170f624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1
import pandas as pd
# Function to query Google's Knowledge Graph API
def query_knowledge_graph(entity_id):
try:
google_search_link = f"https://www.google.com/search?kgmid={entity_id}"
st.markdown(f'[Open in Google Search]({google_search_link})', unsafe_allow_html=True)
except Exception as e:
st.write(f"An error occurred: {e}")
# Function to filter entities with "mid" in their metadata
def filter_entities_with_mid(entities):
return [entity for entity in entities if 'mid' in entity.metadata]
# Function to serialize entity metadata
def serialize_entity_metadata(metadata):
return {k: str(v) for k, v in metadata.items()}
# Function to export entities as a JSON or CSV file
def export_entities(entities):
entity_list = []
for entity in entities:
entity_info = {
"Name": entity.name,
"Type": language_v1.Entity.Type(entity.type_).name,
"Salience Score": entity.salience,
"Metadata": serialize_entity_metadata(entity.metadata),
"Mentions": [mention.text.content for mention in entity.mentions]
}
entity_list.append(entity_info)
# Convert to DataFrame for easier export as CSV
df = pd.DataFrame(entity_list)
# Export as CSV
csv = df.to_csv(index=False)
st.download_button(label="Export Entities as CSV", data=csv, file_name="entities.csv", mime="text/csv")
# Export as JSON
json_data = json.dumps(entity_list, indent=2)
st.download_button(label="Export Entities as JSON", data=json_data, file_name="entities.json", mime="application/json")
# Sidebar content
st.sidebar.title("About This Tool")
st.sidebar.markdown("This tool leverages Google's NLP technology for entity analysis.")
st.sidebar.markdown("### Step-by-Step Guide")
st.sidebar.markdown("""
1. **Open the Tool**: Navigate to the URL where the tool is hosted.
2. **User Input**: Enter the text you want to analyze.
3. **Analyze**: Click the 'Analyze' button.
4. **View Results**: See the identified entities and their details.
5. **Export Entities**: Export the entities as JSON or CSV.
""")
# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("This tool analyzes text to identify entities such as people, locations, organizations, and events.")
st.write("Entity salience scores are always relative to the analyzed text.")
def sample_analyze_entities(text_content):
service_account_info = json.loads(st.secrets["google_nlp"])
credentials = service_account.Credentials.from_service_account_info(
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
client = language_v1.LanguageServiceClient(credentials=credentials)
document = {"content": text_content, "type_": language_v1.Document.Type.PLAIN_TEXT, "language": "en"}
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
# Filter entities that have a "mid" in their metadata
entities_with_mid = filter_entities_with_mid(response.entities)
st.markdown(f"# We found {len(entities_with_mid)} entities with 'mid' in their metadata")
st.write("---")
for i, entity in enumerate(entities_with_mid):
st.write(f"Entity {i+1} of {len(entities_with_mid)}")
st.write(f"Name: {entity.name}")
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}")
st.write(f"Salience Score: {entity.salience}")
if entity.metadata:
st.write("Metadata:")
st.write(entity.metadata)
if 'mid' in entity.metadata:
entity_id = entity.metadata['mid']
query_knowledge_graph(entity_id)
if entity.mentions:
mention_count = len(entity.mentions)
plural = "s" if mention_count > 1 else ""
st.write(f"Mentions: {mention_count} mention{plural}")
st.write("Raw Array:")
st.write(entity.mentions)
st.write("---")
# Add the export functionality
export_entities(entities_with_mid)
# User input for text analysis
user_input = st.text_area("Enter text to analyze")
if st.button("Analyze"):
if user_input:
sample_analyze_entities(user_input)
|