Spaces:
Build error
Build error
File size: 3,793 Bytes
564ce0c 569a26f 564ce0c 8deafd3 e5f77a9 564ce0c 0553e73 3fec030 0553e73 3fec030 c077e58 170f624 c077e58 170f624 c077e58 f63dcc6 8deafd3 3fec030 170f624 c077e58 170f624 c077e58 170f624 c077e58 3fec030 0553e73 3fec030 c077e58 0553e73 170f624 bc4e0d2 170f624 a95b8e3 170f624 d57d7e1 170f624 a95b8e3 2534d93 8deafd3 a95b8e3 0a35ca9 a95b8e3 170f624 f66f708 c2b8ffb a95b8e3 569a26f c2b8ffb 170f624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1
import urllib.parse
import urllib.request
# Function to query Google's Knowledge Graph API
def query_knowledge_graph(entity_id):
try:
service_url = 'https://kgsearch.googleapis.com/v1/entities:search'
params = {
'ids': entity_id,
'limit': 1,
'indent': True,
'key': st.secrets["kg_api"],
}
url = service_url + '?' + urllib.parse.urlencode(params)
response = json.loads(urllib.request.urlopen(url).read())
for element in response['itemListElement']:
st.write(f"Knowledge Graph name: {element['result']['name']}")
st.write(f"Knowledge Graph score: {element['resultScore']}")
except Exception as e:
st.write(f"An error occurred while querying the Knowledge Graph: {e}")
# Function to count entities with 'mid' that contains '/g/' or '/m/' in their metadata
def count_entities(entities):
count = 0
for entity in entities:
metadata = entity.metadata
if 'mid' in metadata and ('/g/' in metadata['mid'] or '/m/' in metadata['mid']):
count += 1
return count
# Sidebar content
st.sidebar.title("About This Tool")
st.sidebar.markdown("This tool leverages Google's NLP technology for entity analysis.")
st.sidebar.markdown("### Step-by-Step Guide")
st.sidebar.markdown("""
1. **Open the Tool**: Navigate to the URL where the tool is hosted.
2. **User Input**: Enter the text you want to analyze.
3. **Analyze**: Click the 'Analyze' button.
4. **View Results**: See the identified entities and their details.
""")
# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("This tool analyzes text to identify entities such as people, locations, organizations, and events")
st.write("Entity salience scores are always relative to the analysed text.")
def sample_analyze_entities(text_content):
service_account_info = json.loads(st.secrets["google_nlp"])
credentials = service_account.Credentials.from_service_account_info(
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
client = language_v1.LanguageServiceClient(credentials=credentials)
document = {"content": text_content, "type_": language_v1.Document.Type.PLAIN_TEXT, "language": "en"}
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
# Count the entities with 'mid' and either '/g/' or '/m/' in their metadata
entity_count = count_entities(response.entities)
st.write(f"We found {len(response.entities)} entities - We found {entity_count} Google Entities")
st.write("---")
for i, entity in enumerate(response.entities):
st.write(f"Entity {i+1} of {len(response.entities)}")
st.write(f"Name: {entity.name}")
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}")
st.write(f"Salience Score: {entity.salience}")
if entity.metadata:
st.write("Metadata:")
st.write(entity.metadata)
if 'mid' in entity.metadata and ('/g/' in entity.metadata['mid'] or '/m/' in entity.metadata['mid']):
entity_id = entity.metadata['mid']
query_knowledge_graph(entity_id)
if entity.mentions:
st.write("Mentions:")
st.write(', '.join([mention.text.content for mention in entity.mentions]))
st.write("---")
# User input for text analysis
user_input = st.text_area("Enter text to analyze", max_chars=5000)
if st.button("Analyze"):
if user_input:
sample_analyze_entities(user_input)
|