File size: 2,321 Bytes
564ce0c 569a26f 564ce0c 8c32010 c2b8ffb 569a26f c2b8ffb 569a26f c2b8ffb 569a26f c2b8ffb 9502681 c2b8ffb 9502681 c2b8ffb 9502681 c2b8ffb 9502681 f3178b1 7c393ac c2b8ffb 569a26f c2b8ffb 569a26f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1
# Adding checkbox options for entity types
entity_types_to_show = [
"UNKNOWN", "PERSON", "LOCATION", "ORGANIZATION", "EVENT", "WORK_OF_ART", "CONSUMER_GOOD", "OTHER"
]
selected_types = st.multiselect('Select entity types to show:', entity_types_to_show)
# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("## Introduction to the Knowledge Graph API")
st.write("---")
st.write("""
The Google Knowledge Graph API reveals entity information related to a keyword, that Google knows about.
This information can be very useful for SEO – discovering related topics and what Google believes is relevant.
It can also help when trying to claim/win a Knowledge Graph box on search results.
The API requires a high level of technical understanding, so this tool creates a simple public interface, with the ability to export data into spreadsheets.
""")
def sample_analyze_entities(text_content, your_query=""):
# Parse the JSON string to a dictionary
service_account_info = json.loads(st.secrets["google_nlp"])
# Create credentials
credentials = service_account.Credentials.from_service_account_info(
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
# Initialize the LanguageServiceClient with the credentials
client = language_v1.LanguageServiceClient(credentials=credentials)
# NLP analysis
type_ = language_v1.Document.Type.PLAIN_TEXT
language = "en"
document = {"content": text_content, "type_": type_, "language": language}
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
# Create an empty list to hold the results
entities_list = []
for entity in response.entities:
entity_type_name = language_v1.Entity.Type(entity.type_).name
if entity_type_name in selected_types:
# Rest of your code to handle each entity
# ...
# User input for text analysis
user_input = st.text_area("Enter text to analyze")
your_query = st.text_input("Enter your query (optional)")
if st.button("Analyze"):
sample_analyze_entities(user_input, your_query)
|