Spaces:
Sleeping
Sleeping
File size: 26,818 Bytes
c439b0b 9a5d6f4 f22d251 9a5d6f4 f22d251 8750848 f22d251 2314890 f22d251 865760d f22d251 865760d f22d251 2314890 865760d bfff8b9 865760d 779004a 918728f 8bd32d3 918728f d827042 2314890 8bd32d3 5d54e07 918728f f22d251 779004a d341413 3c693f3 865760d d341413 3c693f3 865760d 3c693f3 865760d 5b900d3 865760d 5b900d3 865760d 0c5b57e 865760d 779004a 865760d 2314890 865760d f22d251 2314890 d827042 fb98f2d 8bd32d3 da9244d 3ccbccc 8bd32d3 779004a d827042 da9244d d827042 da9244d d827042 da9244d d827042 8bd32d3 d827042 8bd32d3 d827042 8bd32d3 d827042 da9244d d827042 f052b1c 8bd32d3 d827042 8bd32d3 d827042 8bd32d3 d827042 779004a d827042 779004a f22d251 779004a 2b3c092 779004a 2b3c092 779004a 2b3c092 779004a 2b3c092 779004a f22d251 3c693f3 779004a 5b900d3 8750848 d827042 f22d251 d827042 f22d251 5b900d3 f22d251 2314890 f22d251 2314890 f22d251 d827042 f22d251 69b7b38 2314890 3c693f3 2314890 779004a 3c693f3 0c5b57e 3c693f3 0c5b57e 779004a 3c693f3 779004a 0c5b57e 779004a 3c693f3 779004a f22d251 779004a 3c693f3 0c5b57e 3c693f3 0c5b57e 779004a 3c693f3 779004a 3c693f3 779004a 3c693f3 8bd32d3 779004a 3c693f3 0c5b57e 779004a 3c693f3 8bd32d3 3c693f3 0c5b57e 3c693f3 f22d251 3c693f3 779004a 3c693f3 779004a 3c693f3 779004a 2314890 f22d251 3c693f3 779004a 2314890 5d54e07 69b7b38 d827042 f22d251 8bd32d3 f052b1c 8bd32d3 da9244d 8bd32d3 da9244d 8bd32d3 2314890 f052b1c 8bd32d3 f052b1c 8bd32d3 865760d 8bd32d3 2314890 8bd32d3 f22d251 3c693f3 8bd32d3 f22d251 8bd32d3 3c693f3 8750848 8bd32d3 898bb75 0c5b57e 898bb75 0c5b57e 898bb75 0c5b57e 898bb75 0c5b57e 898bb75 3c693f3 898bb75 0c5b57e 3c693f3 898bb75 0c5b57e 898bb75 3c693f3 201a16f 8750848 f22d251 8bd32d3 8750848 8bd32d3 8750848 8bd32d3 201a16f 8bd32d3 201a16f 8bd32d3 201a16f 8bd32d3 201a16f 8bd32d3 201a16f 8bd32d3 e8745ad 2314890 8bd32d3 e8745ad 8bd32d3 e8745ad 779004a 8bd32d3 779004a 8bd32d3 779004a e8745ad 8bd32d3 e8745ad 8bd32d3 69b7b38 f22d251 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
# +
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# +
import streamlit as st
import streamlit.components.v1 as components
import base64
import leafmap.maplibregl as leafmap
import altair as alt
import ibis
from ibis import _
import ibis.selectors as s
from typing import Optional
def to_streamlit(
self,
width: Optional[int] = None,
height: Optional[int] = 600,
scrolling: Optional[bool] = False,
**kwargs,
):
try:
import streamlit.components.v1 as components
import base64
raw_html = self.to_html().encode("utf-8")
raw_html = base64.b64encode(raw_html).decode()
return components.iframe(
f"data:text/html;base64,{raw_html}",
width=width,
height=height,
scrolling=scrolling,
**kwargs,
)
except Exception as e:
raise Exception(e)
# gap codes 3 and 4 are off by default.
default_gap = {
3: False,
4: False,
}
# +
#pad_pmtiles = "https://data.source.coop/cboettig/pad-us-3/pad-stats.pmtiles"
#parquet = "https://data.source.coop/cboettig/pad-us-3/pad-stats.parquet"
pad_pmtiles = "https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/pad-stats.pmtiles"
# parquet = "https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/pad-stats.parquet"
parquet = "pad-stats.parquet"
# adding this to test out git
# some default color variables, consider user palette via st.color_picker()
private_color = "#DE881E" # orange #"#850101" # red
tribal_color = "#BF40BF" # purple
mixed_color = "#005a00" # green
public_color = "#3388ff" # blue
# default color breaks, consider tool via st.slider()
low = 2
high = 3
alpha = .5
color_choice = "Manager Type"
us_lower_48_area_m2 = 7.8e+12
# +
## Helper functions
#@st.cache_resource
# def ibis_connection(parquet):
# return ibis.read_parquet(parquet)
# pad_data = ibis_connection(parquet)
con = ibis.duckdb.connect(extensions=["spatial"])
pad_data = con.read_parquet(parquet)
#@st.cache_data()
# def summary_table(column, colors):
# df = (pad_data
# .rename(area = "area_square_meters")
# .group_by(_[column])
# .aggregate(
# )
# .mutate(percent_protected = _.percent_protected.round(1))
# .inner_join(colors, column)
# )
# df = df.to_pandas()
# df[column] = df[column].astype(str)
# return df
from functools import reduce
def get_summary(pad_data, combined_filter, column, colors=None): #summary stats, based on filtered data
# ca = ca.filter(_.gap_code.isin([1,2])) #only gap 1 and 2
df = pad_data.filter(combined_filter)
df = (df
.rename(area = "area_square_meters")
.group_by(*column) # unpack the list for grouping
.aggregate(hectares_protected = (_.area.sum() / 10000).round(),
percent_protected = 100 * _.area.sum() / us_lower_48_area_m2,
mean_richness = (_.richness * _.area).sum() / _.area.sum(),
mean_rsr = (_.rsr * _.area).sum() / _.area.sum(),
mean_irrecoverable_carbon = (_.irrecoverable_carbon * _.area).sum() / _.area.sum(),
mean_manageable_carbon = (_.manageable_carbon * _.area).sum() / _.area.sum(),
mean_carbon_lost = (_.deforest_carbon * _.area).sum() / _.area.sum(),
mean_crop_expansion = (_.crop_expansion * _.area).sum() / _.area.sum(),
mean_human_impact = (_.human_impact * _.area).sum() / _.area.sum(),
mean_forest_integrity_loss = (_.forest_integrity_loss*_.area).sum() / _.area.sum(),
mean_bio_intact_loss = (_.biodiversity_intactness_loss * _.area).sum() / _.area.sum(),
)
.mutate(percent_protected=_.percent_protected.round(1))
)
if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it.
df = df.inner_join(colors, column)
df = df.cast({col: "string" for col in column})
df = df.to_pandas()
return df
def summary_table(column, colors, filter_cols, filter_vals,colorby_vals): # get df for charts + df_tab for printed table + df_percent for percentage (only gap 1 and 2)
filters = []
if filter_cols and filter_vals: #if a filter is selected, add to list of filters
for filter_col, filter_val in zip(filter_cols, filter_vals):
if len(filter_val) > 1:
filters.append(getattr(_, filter_col).isin(filter_val))
else:
filters.append(getattr(_, filter_col) == filter_val[0])
if column not in filter_cols: #show color_by column in table by adding it as a filter (if it's not already a filter)
filter_cols.append(column)
filters.append(getattr(_, column).isin(colorby_vals[column]))
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
df = get_summary(pad_data, combined_filter, [column], colors) # df used for charts
df_tab = get_summary(pad_data, combined_filter, filter_cols, colors = None) #df used for printed table
df_percent = get_summary(pad_data.filter(_.gap_code.isin([1,2])), combined_filter, [column], colors) # only gap 1 and 2 count towards percentage
return df, df_tab, df_percent
def bar_chart(df, x, y):
chart = alt.Chart(df).mark_bar().encode(
x=x,
y=y,
color=alt.Color('color').scale(None)
).properties(width="container", height=300)
return chart
def area_plot(df, column):
base = alt.Chart(df).encode(
alt.Theta("percent_protected:Q").stack(True),
)
pie = ( base
.mark_arc(innerRadius= 40, outerRadius=100)
.encode(alt.Color("color:N").scale(None).legend(None),
tooltip=['percent_protected', 'hectares_protected', column])
)
text = ( base
.mark_text(radius=80, size=14, color="white")
.encode(text = column + ":N")
)
plot = pie # pie + text
return plot.properties(width="container", height=300)
def pad_style(paint, alpha):
return {
"version": 8,
"sources": {
"pad": {
"type": "vector",
"url": "pmtiles://" + pad_pmtiles,
"attribution": "US PAD v3"}},
"layers": [{
"id": "public",
"source": "pad",
"source-layer": "pad-stats",
"type": "fill",
"paint": {
"fill-color": paint,
"fill-opacity": alpha
}
}]}
def get_pmtiles_style(paint, alpha, cols, values): #style depends on the filters selected.
filters = []
for col, val in zip(cols, values):
filter_condition = ["match", ["get", col], val, True, False]
filters.append(filter_condition)
combined_filter = ["all"] + filters
return {
"version": 8,
"sources": {
"pad": {
"type": "vector",
"url": "pmtiles://" + pad_pmtiles,
"attribution": "US PAD v3",
}
},
"layers": [{
"id": "public",
"source": "pad",
"source-layer": "pad-stats",
"type": "fill",
"filter": combined_filter, # Use the combined filter
"paint": {
"fill-color": paint,
"fill-opacity": alpha
}
}]
}
# +
def getButtons(style_options, color_choice, default_gap=None): #finding the buttons selected to use as filters
column = style_options[color_choice]['property']
opts = [style[0] for style in style_options[color_choice]['stops']]
default_gap = default_gap or {}
buttons = {
name: st.checkbox(f"{name}", value=default_gap.get(name, True), key=column + str(name))
for name in opts
}
filter_choice = [key for key, value in buttons.items() if value] # return only selected
d = {}
d[column] = filter_choice
return d
def getColorVals(style_options, color_choice):
#df_tab only includes filters selected, we need to manually add "color_by" column (if it's not already a filter).
column = style_options[color_choice]['property']
opts = [style[0] for style in style_options[color_choice]['stops']]
d = {}
d[column] = opts
return d
custom_style = '''
"blue"
'''
sample_q = '''(
ibis.read_parquet(parquet).
mutate(area = _.area_square_meters).
group_by(_.gap_code).
aggregate(percent_protected = 100 * _.area.sum() / us_lower_48_area_m2,
mean_richness = (_.richness * _.area).sum() / _.area.sum(),
mean_rsr = (_.rsr * _.area).sum() / _.area.sum()
).
mutate(percent_protected = _.percent_protected.round())
)
'''
## Protected Area polygon color codes
manager = {
'property': 'manager_type',
'type': 'categorical',
'stops': [
['Federal', "darkblue"],
['State', public_color],
['Local Government', "lightblue"],
['Regional Agency Special District', "darkgreen"],
['Unknown', "grey"],
['Joint', "green"],
['American Indian Lands', tribal_color],
['Private', "darkred"],
['Non-Governmental Organization', "orange"]
]
}
easement = {
'property': 'category',
'type': 'categorical',
'stops': [
['Fee', public_color],
['Easement', private_color],
['Proclamation', tribal_color]
]
}
access = {
'property': 'public_access',
'type': 'categorical',
'stops': [
['Open Access', public_color],
['Closed', private_color],
['Unknown', "grey"],
['Restricted Access', tribal_color]
]
}
gap = {
'property': 'gap_code',
'type': 'categorical',
'stops': [
["1", "#26633d"],
["2", "#879647"],
["3", "#BBBBBB"],
["4", "#F8F8F8"]
]
}
iucn = {
'property': 'iucn_category',
'type': 'categorical',
'stops': [
["Ia: Strict nature reserves", "#4B0082"],
["Ib: Wilderness areas", "#663399"],
["II: National park", "#7B68EE"],
["III: Natural monument or feature", "#9370DB"],
["IV: Habitat / species management", "#8A2BE2"],
["V: Protected landscape / seascape", "#9932CC"],
["VI: Protected area with sustainable use of natural resources", "#9400D3"],
["Other Conservation Area", "#DDA0DD"],
["Unassigned", "#F8F8F8"],
]
}
style_options = {
"GAP Status Code": gap,
"IUCN Status Code": iucn,
"Manager Type": manager,
"Fee/Easement": easement,
"Public Access": access,
# "Mean Richness": richness,
# "Mean RSR": rsr,
# "custom": eval(custom)
}
code_ex='''
m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif",
palette="oranges", name="Cropland Expansion", transparent_bg=True, opacity = 0.7, fit_bounds=False)
'''
justice40 = "https://data.source.coop/cboettig/justice40/disadvantaged-communities.pmtiles"
justice40_fill = {
'property': 'Disadvan',
'type': 'categorical',
'stops': [
[0, "rgba(255, 255, 255, 0)"],
[1, "rgba(0, 0, 139, 1)"]]}
justice40_style = {
"version": 8,
"sources": {
"source1": {
"type": "vector",
"url": "pmtiles://" + justice40,
"attribution": "Justice40"}
},
"layers": [{
"id": "layer1",
"source": "source1",
"source-layer": "DisadvantagedCommunitiesCEJST",
"type": "fill",
"paint": {"fill-color": justice40_fill, "fill-opacity": 0.6}}]
}
bil_url = "https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/bil.geojson"
bil_fill = {
"fill-extrusion-color": {
"property": "AtlasCateg",
"type": "categorical",
"stops": [
["America the Beautiful Challenge Grants", "orange"],
["Clean Energy and Power", "gray"],
["Environmental Remediation", "green"],
["Resilience and Ecosystem Restoration", "purple"],
["Water Infrastructure", "blue"]
],
},
#"fill-extrusion-height": ["*", .01, ["get", "FundingAmo"]],
"fill-extrusion-height": ["*", 50, ["sqrt", ["get", "FundingAmo"]]],
"fill-extrusion-opacity": 0.9,
}
###########################################################################################################
# +
st.set_page_config(layout="wide", page_title="Protected Areas Explorer", page_icon=":globe:")
'''
# US Conservation Atlas Prototype
An interactive cloud-native geospatial tool for exploring and visualizing the United States' protected lands with open data.
- β Safari/iOS not yet supported
- β¬
οΈ Use the left sidebar to color-code the map by different attributes, toggle on data layers and view summary charts, or filter data.
'''
st.divider()
filters = {}
m = leafmap.Map(style="positron")
# +
with st.sidebar:
with st.expander("πΊ Basemaps"):
# radio selector would make more sense
if st.toggle("Topography"):
m.add_basemap("Esri.WorldShadedRelief")
if st.toggle("Satellite"):
m.add_basemap("Esri.WorldImagery")
# if st.toggle("Protected Areas", True):
color_choice = st.radio("Color by:", style_options)
colorby_vals = getColorVals(style_options, color_choice) #get options for selected color_by column
alpha = st.slider("transparency", 0.0, 1.0, 0.5)
"Data layers:"
with st.expander("π¦ Biodiversity"):
a_bio = st.slider("transparency", 0.0, 1.0, 0.4, key = "biodiversity")
show_richness = st.toggle("Species Richness", False)
if show_richness:
m.add_tile_layer(url="https://data.source.coop/cboettig/mobi/tiles/red/species-richness-all/{z}/{x}/{y}.png",
name="MOBI Species Richness",
attribution="NatureServe",
opacity=a_bio
)
show_rsr = st.toggle("Range-Size Rarity")
if show_rsr:
m.add_tile_layer(url="https://data.source.coop/cboettig/mobi/tiles/green/range-size-rarity-all/{z}/{x}/{y}.png",
name="MOBI Range-Size Rarity",
attribution="NatureServe",
opacity=a_bio
)
#m.add_cog_layer("https://data.source.coop/cboettig/mobi/range-size-rarity-all/RSR_All.tif",
# palette="greens", name="Range-Size Rarity", transparent_bg=True, opacity = 0.9, fit_bounds=False)
with st.expander("β
Carbon & Climate"):
a_climate = st.slider("transparency", 0.0, 1.0, 0.3, key = "climate")
show_carbon_lost = st.toggle("Carbon Lost (2002-2022)")
if show_carbon_lost:
m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/deforest_carbon_100m_cog.tif",
palette="reds", name="Carbon Lost (2002-2022)", transparent_bg=True, opacity = a_climate, fit_bounds=False)
show_irr_carbon = st.toggle("Irrecoverable Carbon")
if show_irr_carbon:
m.add_cog_layer("https://data.source.coop/cboettig/carbon/cogs/irrecoverable_c_total_2018.tif",
palette="purples", name="Irrecoverable Carbon", transparent_bg=True, opacity = a_climate, fit_bounds=False)
show_man_carbon = st.toggle("Manageable Carbon")
if show_man_carbon:
m.add_cog_layer("https://data.source.coop/cboettig/carbon/cogs/manageable_c_total_2018.tif",
palette="greens", name="Manageable Carbon", transparent_bg=True, opacity = a_climate, fit_bounds=False)
with st.expander("π Human Impacts"):
a_hi = st.slider("transparency", 0.0, 1.0, 0.5, key = "hi")
show_human_impact = st.toggle("Human Impact")
if show_human_impact:
hi="https://data.source.coop/vizzuality/hfp-100/hfp_2021_100m_v1-2_cog.tif"
m.add_cog_layer(hi, palette="purples", name="Human Impact", transparent_bg=True, opacity = a_hi, fit_bounds=False)
show_crop_expansion = st.toggle("Cropland Expansion")
if show_crop_expansion:
m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif",opacity = a_hi, name = "Cropland Expansion")
# palette="greens", name="cropland expansion", transparent_bg=True, opacity = 0.8, fit_bounds=False)
show_bio_loss = st.toggle("Biodiversity Intactness Loss")
if show_bio_loss:
m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/natcrop_bii_100m_cog.tif",
palette="reds", name="Biodiversity Intactness Loss", transparent_bg=True, opacity = a_hi, fit_bounds=False)
show_forest_loss = st.toggle("Forest Integrity Loss")
if show_forest_loss:
m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/natcrop_fii_100m_cog.tif",
palette="reds", name="Forest Integrity Loss", transparent_bg=True, opacity = a_hi, fit_bounds=False)
with st.expander("π° Conservation Investment"):
if st.toggle("Bipartisan Infrastructure Law"):
m.add_geojson(bil_url, layer_type="fill-extrusion", paint=bil_fill, name="BIL", fit_bounds=False)
with st.expander("π» Custom Code"):
if st.toggle("Custom Map Layers"):
code = st.text_area(label = "leafmap code:",
value = code_ex,
height = 100)
eval(compile(code, "<string>", "exec"))
st.divider()
"Filters:"
for label in style_options: # get selected filters (based on the buttons selected)
with st.expander(label):
if label == "GAP Status Code": # gap code 1 and 2 are on by default
opts = getButtons(style_options, label, default_gap)
else: # other buttons are not on by default.
opts = getButtons(style_options, label)
filters.update(opts)
selected = {k: v for k, v in filters.items() if v}
if selected:
filter_cols = list(selected.keys())
filter_vals = list(selected.values())
else:
filter_cols = []
filter_vals = []
style = get_pmtiles_style(style_options[color_choice], alpha, filter_cols, filter_vals)
legend_d = {cat: color for cat, color in style_options[color_choice]['stops']}
m.add_legend(legend_dict = legend_d, position = 'bottom-left')
m.add_pmtiles(pad_pmtiles, style=style, name="PAD", opacity=alpha, tooltip=True)
# style = get_pmtiles_style(style_options[color_choice], alpha)
# m.add_pmtiles(pad_pmtiles, style=style, visible=True, opacity=alpha, tooltip=True)
# "## Boundaries"
# boundaries = st.radio("Boundaries:",
# ["None",
# "State Boundaries",
# "County Boundaries",
# "Congressional District",
# "custom"]
# )
# +
# Map radio buttons to corresponding column:
select_column = {
"GAP Status Code": "gap_code",
"IUCN Status Code": "iucn_category",
"Manager Type": "manager_type",
"Fee/Easement": "category",
"Public Access": "public_access",
"Mean Richness": "gap_code",
"Mean RSR": "gap_code",
"custom": "gap_code"}
column = select_column[color_choice]
# Map radio buttons to corresponding color-scheme:
select_colors = {
"GAP Status Code": gap["stops"],
"IUCN Status Code": iucn["stops"],
"Manager Type": manager["stops"],
"Fee/Easement": easement["stops"],
"Public Access": access["stops"],
"Mean Richness": gap["stops"],
"Mean RSR": gap["stops"],
"custom": gap["stops"]}
colors = (ibis
.memtable(select_colors[color_choice], columns = [column, "color"])
.to_pandas()
)
# +
# get summary tables used for charts + printed table + percentage
# df - charts; df_tab - printed table (omits colors) + df_percent - only gap codes 1 & 2 count towards percentage
df,df_tab,df_percent = summary_table(column, colors, filter_cols, filter_vals, colorby_vals)
# compute area covered (only gap 1 and 2)
# df_onlygap = df[df.gap_code.isin([1,2])]
total_percent = df_percent.percent_protected.sum().round(1)
# charts displayed based on color_by variable
richness_chart = bar_chart(df, column, 'mean_richness')
rsr_chart = bar_chart(df, column, 'mean_rsr')
irr_carbon_chart = bar_chart(df, column, 'mean_irrecoverable_carbon')
man_carbon_chart = bar_chart(df, column, 'mean_manageable_carbon')
carbon_loss_chart = bar_chart(df, column, 'mean_carbon_lost')
hi_chart = bar_chart(df, column, 'mean_human_impact')
crop_expansion_chart = bar_chart(df, column, 'mean_crop_expansion')
bio_intact_loss_chart = bar_chart(df, column, 'mean_bio_intact_loss')
forest_integrity_loss_chart = bar_chart(df, column, 'mean_forest_integrity_loss')
main = st.container()
with main:
map_col, stats_col = st.columns([2,1])
with map_col:
to_streamlit(m, height=700)
# df = summary_table(column, colors)
# total_percent = df.percent_protected.sum().round(1)
# richness_chart = bar_chart(df, column, 'mean_richness')
# rsr_chart = bar_chart(df, column, 'mean_rsr')
# carbon_lost = bar_chart(df, column, 'carbon_lost')
# crop_expansion = bar_chart(df, column, 'crop_expansion')
# human_impact = bar_chart(df, column, 'human_impact')
with stats_col:
with st.container():
f"{total_percent}% Continental US Covered"
st.altair_chart(area_plot(df, column), use_container_width=True)
with st.container():
if show_richness:
"Species Richness"
st.altair_chart(richness_chart, use_container_width=True)
if show_rsr:
"Range-Size Rarity"
st.altair_chart(rsr_chart, use_container_width=True)
if show_carbon_lost:
"Carbon Lost ('02-'22)"
st.altair_chart(carbon_loss_chart, use_container_width=True)
if show_crop_expansion:
"Crop Expansion"
st.altair_chart(crop_expansion_chart, use_container_width=True)
if show_human_impact:
"Human Impact"
st.altair_chart(hi_chart, use_container_width=True)
if show_irr_carbon:
"Irrecoverable Carbon"
st.altair_chart(irr_carbon_chart, use_container_width=True)
if show_man_carbon:
"Manageable Carbon"
st.altair_chart(man_carbon_chart, use_container_width=True)
if show_bio_loss:
"Biodiversity Intactness Loss"
st.altair_chart(bio_intact_loss_chart, use_container_width=True)
if show_forest_loss:
"Forest Integrity Loss"
st.altair_chart(forest_integrity_loss_chart, use_container_width=True)
# charts displayed based on color_by variable
# +
st.divider()
footer = st.container()
with footer:
'''
## Custom queries
Input custom python code below to interactively explore the data.
'''
col2_1, col2_2 = st.columns(2)
with col2_1:
query = st.text_area(
label = "Python code:",
value = sample_q,
height = 300)
with col2_2:
"Output table:"
df = eval(query)
st.write(df.to_pandas())
st.divider()
'''
## Credits
Author: Cassie Buhler & Carl Boettiger, UC Berkeley
License: BSD-2-clause
### Data sources
- US Protected Areas Database v3 by USGS. Data: https://beta.source.coop/cboettig/us-pad-3. Citation: https://doi.org/10.5066/P9Q9LQ4B, License: Public Domain
- Imperiled Species Richness and Range-Size-Rarity from NatureServe (2022). Data: https://beta.source.coop/repositories/cboettig/mobi. License CC-BY-NC-ND
- Carbon-loss and farming impact by Vizzuality, on https://beta.source.coop/repositories/vizzuality/lg-land-carbon-data. Citation: https://doi.org/10.1101/2023.11.01.565036, License: CC-BY
- Human Footprint by Vizzuality, on https://beta.source.coop/repositories/vizzuality/hfp-100. Citation: https://doi.org/10.3389/frsen.2023.1130896, License: Public Domain
- Fire polygons by USGS, reprocessed to PMTiles on https://beta.source.coop/cboettig/fire/. License: Public Domain
- Irrecoverable Carbon from Conservation International, reprocessed to COG on https://beta.source.coop/cboettig/carbon, citation: https://doi.org/10.1038/s41893-021-00803-6, License: CC-BY-NC
- Climate and Economic Justice Screening Tool, US Council on Environmental Quality, Justice40, data: https://beta.source.coop/repositories/cboettig/justice40/description/, License: Public Domain
### Software
Proudly built with a free and Open Source software stack: Streamlit (reactive application), HuggingFace (application hosting), Source.Coop (data hosting),
using cloud-native data serializations in COG, PMTiles, and GeoParquet. Coded in pure python using leafmap and duckdb. Map styling with [MapLibre](https://maplibre.org/).
'''
|