cassiebuhler's picture
legend gets cropped out
e999258
import streamlit as st
import streamlit.components.v1 as components
import base64
import leafmap.maplibregl as leafmap
import altair as alt
import ibis
from ibis import _
import ibis.selectors as s
import os
import pandas as pd
import geopandas as gpd
from shapely import wkb
import sqlalchemy
import pathlib
from typing import Optional
from functools import reduce
from itertools import chain
from variables import *
def colorTable(select_colors,color_choice,column):
colors = (ibis
.memtable(select_colors[color_choice], columns=[column, "color"])
.to_pandas()
)
return colors
def get_summary(ca, combined_filter, column, main_group, colors=None):
df = ca.filter(combined_filter)
#total acres for each group
# if colors is not None and not colors.empty:
group_totals = df.group_by(main_group).aggregate(total_acres=_.acres.sum())
df = ca.filter(combined_filter)
df = (df
.group_by(*column) # unpack the list for grouping
.aggregate(percent_CA= _.acres.sum() / ca_area_acres,
acres = _.acres.sum(),
mean_richness = (_.richness * _.acres).sum() / _.acres.sum(),
mean_rsr = (_.rsr * _.acres).sum() / _.acres.sum(),
mean_irrecoverable_carbon = (_.irrecoverable_carbon * _.acres).sum() / _.acres.sum(),
mean_manageable_carbon = (_.manageable_carbon * _.acres).sum() / _.acres.sum(),
mean_fire = (_.fire *_.acres).sum()/_.acres.sum(),
mean_rxburn = (_.rxburn *_.acres).sum()/_.acres.sum(),
mean_disadvantaged = (_.disadvantaged_communities * _.acres).sum() / _.acres.sum(),
mean_svi = (_.svi * _.acres).sum() / _.acres.sum(),
)
.mutate(percent_CA=_.percent_CA.round(3),
acres=_.acres.round(0))
)
# if colors is not None and not colors.empty:
df = df.inner_join(group_totals, main_group)
df = df.mutate(percent_group=( _.acres / _.total_acres).round(3))
if colors is not None and not colors.empty: #only the df will have colors, df_tab doesn't since we are printing it.
df = df.inner_join(colors, column[-1])
df = df.cast({col: "string" for col in column})
df = df.to_pandas()
return df
def summary_table(ca, column, select_colors, color_choice, filter_cols, filter_vals,colorby_vals): # get df for charts + df_tab for printed table
colors = colorTable(select_colors,color_choice,column)
filters = []
if filter_cols and filter_vals: #if a filter is selected, add to list of filters
for filter_col, filter_val in zip(filter_cols, filter_vals):
if len(filter_val) > 1:
filters.append(getattr(_, filter_col).isin(filter_val))
else:
filters.append(getattr(_, filter_col) == filter_val[0])
if column not in filter_cols: #show color_by column in table by adding it as a filter (if it's not already a filter)
filter_cols.append(column)
filters.append(getattr(_, column).isin(colorby_vals[column]))
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
only_conserved = (combined_filter) & (_.status.isin(['30x30-conserved']))
df_percent = get_summary(ca, only_conserved, [column],column, colors) # df used for percentage, excludes non-conserved.
df_tab = get_summary(ca, combined_filter, filter_cols, column, colors = None) #df used for printed table
if "non-conserved" in list(chain.from_iterable(filter_vals)):
combined_filter = (combined_filter) | (_.status.isin(['non-conserved']))
df = get_summary(ca, combined_filter, [column], column, colors) # df used for charts
df_bar_30x30 = None # no stacked charts if we have status/gap_code
if column not in ["status","gap_code"]: # df for stacked 30x30 status bar chart
colors = colorTable(select_colors,"30x30 Status",'status')
df_bar_30x30 = get_summary(ca, combined_filter, [column, 'status'], column, colors) # df used for charts
return df, df_tab, df_percent, df_bar_30x30
def summary_table_sql(ca, column, colors, ids): # get df for charts + df_tab for printed table
filters = [_.id.isin(ids)]
combined_filter = reduce(lambda x, y: x & y, filters) #combining all the filters into ibis filter expression
df = get_summary(ca, combined_filter, [column], column, colors) # df used for charts
return df
def get_hex(df, color,sort_order):
return list(df.drop_duplicates(subset=color, keep="first")
.set_index(color)
.reindex(sort_order)
.dropna()["color"])
def transform_label(label, x_field):
# converting labels for that gnarly stacked bar chart
if x_field == "access_type":
return label.replace(" Access", "")
elif x_field == "ecoregion":
label = label.replace("Northern California", "NorCal")
label = label.replace("Southern California", "SoCal")
label = label.replace("Southeastern", "SE.")
label = label.replace("Northwestern", "NW.")
label = label.replace("and", "&")
label = label.replace("California", "CA")
return label
else:
return label
def stacked_bar(df, x, y, color, title, colors):
label_colors = colors['color'].to_list()
# bar order
if x == "established": # order labels in chronological order, not alphabetic.
sort = '-x'
elif x == "access_type": # order based on levels of openness
sort = ['Open', 'Restricted', 'No Public', "Unknown"]
elif x == "easement":
sort = ['True', 'False']
elif x == "manager_type":
sort = ["Federal", "Tribal", "State", "Special District", "County", "City", "HOA",
"Joint", "Non Profit", "Private", "Unknown"]
elif x == "status":
sort = ["30x30-conserved", "other-conserved", "unknown", "non-conserved"]
elif x == "ecoregion":
sort = ['SE. Great Basin', 'Mojave Desert', 'Sonoran Desert', 'Sierra Nevada',
'SoCal Mountains & Valleys', 'Mono', 'Central CA Coast', 'Klamath Mountains',
'NorCal Coast', 'NorCal Coast Ranges', 'NW. Basin & Range', 'Colorado Desert',
'Central Valley Coast Ranges', 'SoCal Coast', 'Sierra Nevada Foothills',
'Southern Cascades', 'Modoc Plateau', 'Great Valley (North)',
'NorCal Interior Coast Ranges', 'Great Valley (South)']
else:
sort = 'x'
if x == "manager_type":
angle = 270
height = 350
elif x == 'ecoregion':
angle = 270
height = 430
else:
angle = 0
height = 310
# stacked bar order
sort_order = ['30x30-conserved', 'other-conserved', 'unknown', 'non-conserved']
y_titles = {
'ecoregion': 'Ecoregion (%)',
'established': 'Year (%)',
'manager_type': 'Manager Type (%)',
'easement': 'Easement (%)',
'access_type': 'Access (%)'
}
ytitle = y_titles.get(x, y)
color_hex = get_hex(df[[color, 'color']], color, sort_order)
sort_order = sort_order[0:len(color_hex)]
df["stack_order"] = df[color].apply(lambda val: sort_order.index(val) if val in sort_order else len(sort_order))
# shorten labels to fit on chart
label_transform = f"datum.{x}"
if x == "access_type":
label_transform = f"replace(datum.{x}, ' Access', '')"
elif x == "ecoregion":
label_transform = (
"replace("
"replace("
"replace("
"replace("
"replace("
"replace(datum.ecoregion, 'Northern California', 'NorCal'),"
"'Southern California', 'SoCal'),"
"'Southeastern', 'SE.'),"
"'Northwestern', 'NW.'),"
"'and', '&'),"
"'California', 'CA')"
)
# to match the colors in the map to each label, need to write some ugly code..
# bar chart w/ xlabels hidden
chart = alt.Chart(df).mark_bar(height = 500).transform_calculate(
xlabel=label_transform
).encode(
x=alt.X("xlabel:N", sort=sort, title=None,
axis=alt.Axis(labelLimit=150, labelAngle=angle, labelColor="transparent")),
y=alt.Y(y, title=ytitle, axis=alt.Axis(labelPadding=5)).scale(domain=(0, 1)),
color=alt.Color(
color,
sort=sort_order,
scale=alt.Scale(domain=sort_order, range=color_hex)
),
order=alt.Order("stack_order:Q", sort="ascending"),
tooltip=[
alt.Tooltip(x, type="nominal"),
alt.Tooltip(color, type="nominal"),
alt.Tooltip("percent_group", type="quantitative", format=",.1%"),
alt.Tooltip("acres", type="quantitative", format=",.0f"),
]
)
transformed_labels = [transform_label(str(lab), x) for lab in colors[x]]
labels_df = colors
labels_df['xlabel'] = transformed_labels
# 2 layers, 1 for the symbol and 1 for the text
if angle == 0:
symbol_layer = alt.Chart(labels_df).mark_point(
filled=True,
shape="circle",
size=100,
xOffset = 0,
yOffset=130,
align = 'left',
tooltip = False
).encode(
x=alt.X("xlabel:N", sort=sort),
color=alt.Color("color:N", scale=None)
)
text_layer = alt.Chart(labels_df).mark_text(
dy=115, # shifts the text to the right of the symbol
dx = 0,
yOffset=0,
xOffset = 0,
align='center',
color="black",
tooltip = False
).encode(
x=alt.X("xlabel:N", sort=sort),
text=alt.Text("xlabel:N")
)
# vertical labels
elif angle == 270:
symbol_layer = alt.Chart(labels_df).mark_point(
xOffset = 0,
yOffset= 100,
filled=True,
shape="circle",
size=100,
tooltip = False
).encode(
x=alt.X("xlabel:N", sort=sort),
color=alt.Color("color:N", scale=None)
)
text_layer = alt.Chart(labels_df).mark_text(
dy=0,
dx = -110,
angle=270,
align='right',
color="black",
tooltip = False
).encode(
x=alt.X("xlabel:N", sort=sort),
text=alt.Text("xlabel:N")
)
custom_labels = alt.layer(symbol_layer, text_layer)
final_chart = alt.layer(chart, custom_labels)
# put it all together
final_chart = final_chart.properties(
width="container",
height=height,
title=title
).configure_legend(
direction='horizontal',
orient='top',
columns=2,
title=None,
labelOffset=2,
offset=10,
symbolType = 'square'
).configure_title(
fontSize=18, align="center", anchor='middle', offset=10
)
return final_chart
def area_plot(df, column): # Percent protected pie chart
base = alt.Chart(df).encode(
alt.Theta("percent_CA:Q").stack(True),
)
pie = (
base
.mark_arc(innerRadius=40, outerRadius=100, stroke="black", strokeWidth=0.5)
.encode(
alt.Color("color:N").scale(None).legend(None),
tooltip=[
alt.Tooltip(column, type="nominal"),
alt.Tooltip("percent_CA", type="quantitative", format=",.1%"),
alt.Tooltip("acres", type="quantitative", format=",.0f"),
]
)
)
text = (
base
.mark_text(radius=80, size=14, color="white")
.encode(text=column + ":N")
)
plot = pie # pie + text
return plot.properties(width="container", height=290)
def bar_chart(df, x, y, title): #display summary stats for color_by column
#axis label angles / chart size
if x == "manager_type": #labels are too long, making vertical
angle = 270
height = 373
elif x == 'ecoregion': # make labels vertical and figure taller
angle = 270
height = 430
else: #other labels are horizontal
angle = 0
height = 310
# order of bars
sort = 'x'
lineBreak = ''
if x == "established": # order labels in chronological order, not alphabetic.
sort = '-x'
elif x == "access_type": #order based on levels of openness
sort=['Open', 'Restricted', 'No Public', "Unknown"]
elif x == "easement":
sort=['True','False']
elif x == "manager_type":
sort = ["Federal","Tribal","State","Special District", "County", "City", "HOA","Joint","Non Profit","Private","Unknown"]
elif x == "ecoregion":
sort = ['SE. Great Basin','Mojave Desert','Sonoran Desert','Sierra Nevada','SoCal Mountains & Valleys','Mono',
'Central CA Coast','Klamath Mountains','NorCal Coast','NorCal Coast Ranges',
'NW. Basin & Range','Colorado Desert','Central Valley Coast Ranges','SoCal Coast',
'Sierra Nevada Foothills','Southern Cascades','Modoc Plateau','Great Valley (North)','NorCal Interior Coast Ranges',
'Great Valley (South)']
elif x == "status":
sort = ["30x30-conserved","other-conserved","unknown","non-conserved"]
lineBreak = '-'
# modify label names in bar chart to fit in frame
label_transform = f"datum.{x}" # default; no change
if x == "access_type":
label_transform = f"replace(datum.{x}, ' Access', '')" #omit 'access' from access_type
elif x == "ecoregion":
label_transform = (
"replace("
"replace("
"replace("
"replace("
"replace("
"replace(datum.ecoregion, 'Northern California', 'NorCal'),"
"'Southern California', 'SoCal'),"
"'Southeastern', 'SE.'),"
"'Northwestern', 'NW.'),"
"'and', '&'),"
"'California', 'CA')"
)
y_titles = {
'mean_richness': 'Richness (Mean)',
'mean_rsr': 'Range-Size Rarity (Mean)',
'mean_irrecoverable_carbon': 'Irrecoverable Carbon (Mean)',
'mean_manageable_carbon': 'Manageable Carbon (Mean)',
'mean_disadvantaged': 'Disadvantaged (Mean)',
'mean_svi': 'SVI (Mean)',
'mean_fire': 'Fire (Mean)',
'mean_rxburn': 'Rx Fire (Mean)'
}
ytitle = y_titles.get(y, y) # Default to `y` if not in the dictionary
x_title = next(key for key, value in select_column.items() if value == x)
chart = alt.Chart(df).mark_bar(stroke = 'black', strokeWidth = .5).transform_calculate(
label=label_transform
).encode(
x=alt.X("label:N",
axis=alt.Axis(labelAngle=angle, title=x_title, labelLimit = 200),
sort=sort),
y=alt.Y(y, axis=alt.Axis(title = ytitle)),
color=alt.Color('color').scale(None),
).configure(lineBreak = lineBreak)
chart = chart.properties(width="container", height=height, title = title
).configure_title(fontSize=18, align = "center",anchor='middle')
return chart
def sync_checkboxes(source):
# gap 1 and gap 2 on -> 30x30-conserved on
if source in ["gap_code1", "gap_code2"]:
st.session_state['status30x30-conserved'] = st.session_state.gap_code1 and st.session_state.gap_code2
# 30x30-conserved on -> gap 1 and gap 2 on
elif source == "status30x30-conserved":
st.session_state.gap_code1 = st.session_state['status30x30-conserved']
st.session_state.gap_code2 = st.session_state['status30x30-conserved']
# other-conserved on <-> gap 3 on
elif source == "gap_code3":
st.session_state["statusother-conserved"] = st.session_state.gap_code3
elif source == "statusother-conserved":
if "gap_code3" in st.session_state and st.session_state["statusother-conserved"] != st.session_state.gap_code3:
st.session_state.gap_code3 = st.session_state["statusother-conserved"]
# unknown on <-> gap 4 on
elif source == "gap_code4":
st.session_state.statusunknown = st.session_state.gap_code4
elif source == "statusunknown":
if "gap_code4" in st.session_state and st.session_state.statusunknown != st.session_state.gap_code4:
st.session_state.gap_code4 = st.session_state.statusunknown
# non-conserved on <-> gap 0
elif source == "gap_code0":
st.session_state['statusnon-conserved'] = st.session_state.gap_code0
elif source == "statusnon-conserved":
if "gap_code0" in st.session_state and st.session_state['statusnon-conserved'] != st.session_state.gap_code0:
st.session_state.gap_code0 = st.session_state['statusnon-conserved']
def getButtons(style_options, style_choice, default_boxes=None):
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
default_boxes = default_boxes or {}
buttons = {}
for name in opts:
key = column + str(name)
buttons[name] = st.checkbox(f"{name}", value=st.session_state[key], key=key, on_change = sync_checkboxes, args = (key,))
filter_choice = [key for key, value in buttons.items() if value]
return {column: filter_choice}
def getColorVals(style_options, style_choice):
#df_tab only includes filters selected, we need to manually add "color_by" column (if it's not already a filter).
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
d = {}
d[column] = opts
return d
def getLegend(style_options, color_choice):
legend = {cat: color for cat, color in style_options[color_choice]['stops']}
position = 'bottom-left'
fontsize = 15
bg_color = 'white'
# shorten legend for ecoregions
if color_choice == "Ecoregion":
legend = {key.replace("Northern California", "NorCal"): value for key, value in legend.items()}
legend = {key.replace("Southern California", "SoCal"): value for key, value in legend.items()}
legend = {key.replace("Southeastern", "SE."): value for key, value in legend.items()}
legend = {key.replace("and", "&"): value for key, value in legend.items()}
legend = {key.replace("California", "CA"): value for key, value in legend.items()}
legend = {key.replace("Northwestern", "NW."): value for key, value in legend.items()}
bg_color = 'rgba(255, 255, 255, 0.6)'
fontsize = 12
return legend, position, bg_color, fontsize
def get_pmtiles_style(paint, alpha, filter_cols, filter_vals):
filters = []
for col, val in zip(filter_cols, filter_vals):
filters.append(["match", ["get", col], val, True, False])
combined_filters = ["all"] + filters
if "non-conserved" in list(chain.from_iterable(filter_vals)):
combined_filters = ["any", combined_filters, ["match", ["get", "status"], ["non-conserved"],True, False]]
style = {
"version": 8,
"sources": {
"ca": {
"type": "vector",
"url": "pmtiles://" + ca_pmtiles,
}
},
"layers": [
{
"id": "ca30x30",
"source": "ca",
"source-layer": "ca30x30",
"type": "fill",
"filter": combined_filters,
"paint": {
"fill-color": paint,
"fill-opacity": alpha
}
}
]
}
return style
def get_pmtiles_style_llm(paint, ids):
combined_filters = ["all", ["match", ["get", "id"], ids, True, False]]
style = {
"version": 8,
"sources": {
"ca": {
"type": "vector",
"url": "pmtiles://" + ca_pmtiles,
}
},
"layers": [
{
"id": "ca30x30",
"source": "ca",
"source-layer": "ca30x30",
"type": "fill",
"filter": combined_filters,
"paint": {
"fill-color": paint,
"fill-opacity": 1,
}
}
]
}
return style