File size: 18,773 Bytes
b4bbaee cbff93c 282dd48 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 cbff93c f508547 e5c8ff6 cbff93c f508547 8c8dfe8 f508547 8c8dfe8 f508547 6bdcb96 8c8dfe8 f508547 282dd48 8c8dfe8 f508547 6bdcb96 8c8dfe8 f508547 8c8dfe8 f508547 282dd48 f508547 8c8dfe8 282dd48 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 e5c8ff6 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 282dd48 f508547 8c8dfe8 6bdcb96 f508547 8c8dfe8 f508547 6bdcb96 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 e5c8ff6 f508547 282dd48 f508547 282dd48 f508547 8a11e5e f508547 282dd48 f508547 8c8dfe8 f508547 978ab36 282dd48 f508547 8c8dfe8 f508547 8c8dfe8 282dd48 f508547 282dd48 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 8c8dfe8 f508547 282dd48 f508547 282dd48 f508547 282dd48 f508547 282dd48 978ab36 f508547 282dd48 b4bbaee cbff93c f508547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import re
import emoji
import statistics
from collections import Counter
from typing import Dict, List, Tuple, Optional, Set, Union
import logging
from pathlib import Path
from datetime import datetime
import csv
from dataclasses import dataclass, asdict
from enum import Enum
import numpy as np
# Configure logging
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_dir / f'analyzer_{datetime.now():%Y%m%d}.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class Sentiment(str, Enum):
POSITIVE = 'positive'
SLIGHTLY_POSITIVE = 'slightly_positive'
NEUTRAL = 'neutral'
SLIGHTLY_NEGATIVE = 'slightly_negative'
NEGATIVE = 'negative'
@dataclass
class CommentData:
username: str
text: str
likes: int
weeks_ago: float
sentiment: Sentiment
class TextAnalyzer:
"""Enhanced text analysis utilities"""
@staticmethod
def clean_text(text: str) -> str:
"""Clean text using more efficient string splitting"""
return ' '.join(text.split())
@staticmethod
def count_emojis(text: str) -> int:
"""Count emojis using set operations for better performance"""
return len({c for c in text if c in emoji.EMOJI_DATA})
@staticmethod
def extract_mentions(text: str) -> Set[str]:
"""Extract mentions returning a set for uniqueness"""
return set(re.findall(r'@[\w.]+', text))
@staticmethod
def get_words(text: str) -> List[str]:
"""Extract meaningful words using improved regex"""
return [w for w in re.findall(r'\b\w{3,}\b', text.lower())]
class SentimentAnalyzer:
"""Enhanced sentiment analysis with gradual classification"""
# Using sets for O(1) lookup
INDICATORS = {
'positive': {
'🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
'прекрасно', 'молодец', 'красота', 'спасибо', 'топ', 'лучший',
'amazing', 'wonderful', 'great', 'perfect', 'love', 'beautiful'
},
'negative': {
'👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
'разочарован', 'печаль', 'грустно', 'bad', 'worst',
'terrible', 'awful', 'sad', 'disappointed'
}
}
@classmethod
def analyze(cls, text: str) -> Sentiment:
"""
Analyze text sentiment with enhanced granularity and emphasis handling
"""
text_lower = text.lower()
words = set(cls.TextAnalyzer.get_words(text_lower))
pos_count = len(words & cls.INDICATORS['positive'])
neg_count = len(words & cls.INDICATORS['negative'])
# Calculate emphasis multiplier based on punctuation
emphasis = min(text.count('!') * 0.2 + text.count('?') * 0.1, 1.0)
# Apply emphasis to the dominant sentiment
if pos_count > neg_count:
pos_count *= (1 + emphasis)
elif neg_count > pos_count:
neg_count *= (1 + emphasis)
# Determine sentiment with granularity
total = pos_count + neg_count
if total == 0:
return Sentiment.NEUTRAL
ratio = pos_count / total
if ratio > 0.8:
return Sentiment.POSITIVE
elif ratio > 0.6:
return Sentiment.SLIGHTLY_POSITIVE
elif ratio < 0.2:
return Sentiment.NEGATIVE
elif ratio < 0.4:
return Sentiment.SLIGHTLY_NEGATIVE
return Sentiment.NEUTRAL
class CommentExtractor:
"""Enhanced comment data extraction"""
class ParseError(Exception):
"""Custom exception for parsing errors"""
pass
# Optimized patterns with named groups
PATTERNS = {
'username': re.compile(r"""
(?:
Фото\sпрофиля\s(?P<name1>[^\n]+)|
^(?P<name2>[^\s]+)\s+|
@(?P<name3>[^\s]+)\s+
)
""", re.VERBOSE),
'time': re.compile(r"""
(?P<value>\d+)\s*
(?P<unit>(?:ч|нед|h|w|час|hour|week))\.?
""", re.VERBOSE),
'likes': re.compile(r"""
(?:
(?P<count1>\d+)\s*отметк[аи]\s\"Нравится\"|
Нравится:\s*(?P<count2>\d+)|
\"Нравится\":\s*(?P<count3>\d+)|
likes?:\s*(?P<count4>\d+)
)
""", re.VERBOSE),
'metadata': re.compile(r"""
Фото\sпрофиля[^\n]+\n|
\d+\s*(?:ч|нед|h|w|час|hour|week)\.?|
(?:Нравится|likes?):\s*\d+|
\d+\s*отметк[аи]\s\"Нравится\"|
Ответить|
Показать\sперевод|
Скрыть\sвсе\sответы|
Смотреть\sвсе\sответы\s\(\d+\)
""", re.VERBOSE)
}
@classmethod
def extract_data(cls, comment_text: str) -> Optional[CommentData]:
"""Extract comment data with improved error handling"""
try:
# Extract username
username_match = cls.PATTERNS['username'].search(comment_text)
if not username_match:
raise cls.ParseError("Could not extract username")
username = next(
name for name in username_match.groups()
if name is not None
).strip()
# Clean comment text
comment = cls.PATTERNS['metadata'].sub('', comment_text)
comment = TextAnalyzer.clean_text(comment)
# Extract time
time_match = cls.PATTERNS['time'].search(comment_text)
if not time_match:
weeks = 0
else:
value = int(time_match.group('value'))
unit = time_match.group('unit')
weeks = value if unit in {'нед', 'w', 'week'} else value / (24 * 7)
# Extract likes
likes_match = cls.PATTERNS['likes'].search(comment_text)
likes = next(
(int(count) for count in likes_match.groups() if count),
0
) if likes_match else 0
# Analyze sentiment
sentiment = SentimentAnalyzer.analyze(comment)
return CommentData(
username=username,
text=comment,
likes=likes,
weeks_ago=weeks,
sentiment=sentiment
)
except cls.ParseError as e:
logger.warning(f"Failed to parse comment: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error parsing comment: {e}", exc_info=True)
return None
class StatsCalculator:
"""Enhanced statistics calculation"""
@staticmethod
def calculate_period_stats(comments: List[CommentData]) -> Dict:
"""Calculate statistics using quantile-based periods"""
if not comments:
return {}
# Sort by weeks
sorted_comments = sorted(comments, key=lambda x: x.weeks_ago)
# Calculate period boundaries using quantiles
weeks = [c.weeks_ago for c in sorted_comments]
boundaries = np.quantile(weeks, [0.33, 0.67])
# Group comments by period
periods = {
'early': [],
'middle': [],
'late': []
}
for comment in sorted_comments:
if comment.weeks_ago <= boundaries[0]:
periods['early'].append(comment)
elif comment.weeks_ago <= boundaries[1]:
periods['middle'].append(comment)
else:
periods['late'].append(comment)
# Calculate statistics for each period
return {
period: {
'comments': len(comments),
'avg_likes': statistics.mean(c.likes for c in comments) if comments else 0,
'sentiment_ratio': sum(
1 for c in comments
if c.sentiment in {Sentiment.POSITIVE, Sentiment.SLIGHTLY_POSITIVE}
) / len(comments) if comments else 0
}
for period, comments in periods.items()
}
def analyze_post(
content_type: str,
link_to_post: str,
post_likes: int,
post_date: str,
description: str,
comment_count: int,
all_comments: str
) -> Tuple[str, str, str, str, str]:
"""Enhanced post analysis with improved error handling and reporting"""
try:
# Split comments using optimized pattern
comment_pattern = re.compile(
r'(?=Фото профиля|\n\s*[a-zA-Z0-9._]+\s+|\b@[a-zA-Z0-9._]+\s+)',
re.MULTILINE
)
comments_blocks = [
block.strip() for block in comment_pattern.split(all_comments)
if block and block.strip() and 'Скрыто алгоритмами Instagram' not in block
]
# Extract and validate comment data
comments_data = []
for block in comments_blocks:
if data := CommentExtractor.extract_data(block):
comments_data.append(data)
if not comments_data:
logger.warning("No valid comments found in the input")
return "No valid comments found", "", "", "", "0"
# Calculate statistics
basic_stats = {
'total_comments': len(comments_data),
'avg_length': statistics.mean(len(c.text) for c in comments_data),
'median_length': statistics.median(len(c.text) for c in comments_data),
'avg_words': statistics.mean(len(TextAnalyzer.get_words(c.text)) for c in comments_data),
'total_likes': sum(c.likes for c in comments_data),
'avg_likes': statistics.mean(c.likes for c in comments_data)
}
# Generate reports
reports = generate_reports(
content_type=content_type,
link_to_post=link_to_post,
post_likes=post_likes,
comments_data=comments_data,
basic_stats=basic_stats
)
return (
reports['analytics'],
"\n".join(c.username for c in comments_data),
"\n".join(c.text for c in comments_data),
"\n".join(str(c.likes) for c in comments_data),
str(basic_stats['total_likes'])
)
except Exception as e:
logger.error(f"Error analyzing post: {e}", exc_info=True)
return f"Error analyzing post: {str(e)}", "", "", "", "0"
def generate_reports(
content_type: str,
link_to_post: str,
post_likes: int,
comments_data: List[CommentData],
basic_stats: Dict
) -> Dict[str, str]:
"""Generate comprehensive reports in multiple formats"""
# Calculate additional statistics
sentiment_dist = Counter(c.sentiment for c in comments_data)
period_stats = StatsCalculator.calculate_period_stats(comments_data)
top_users = Counter(c.username for c in comments_data).most_common(5)
top_mentioned = Counter(
mention for c in comments_data
for mention in TextAnalyzer.extract_mentions(c.text)
).most_common(5)
# Generate CSV report
csv_output = StringIO()
writer = csv.writer(csv_output)
# Write metadata
writer.writerow(['Content Analysis Report'])
writer.writerow(['Generated', datetime.now().isoformat()])
writer.writerow(['Content Type', content_type])
writer.writerow(['Post URL', link_to_post])
writer.writerow(['Post Likes', post_likes])
writer.writerow([])
# Write statistics sections
for section, data in {
'Basic Statistics': basic_stats,
'Sentiment Distribution': sentiment_dist,
'Period Analysis': period_stats,
'Top Users': dict(top_users),
'Top Mentioned': dict(top_mentioned)
}.items():
writer.writerow([section])
for key, value in data.items():
writer.writerow([key, value])
writer.writerow([])
# Generate text report
text_report = (
f"ANALYSIS REPORT\n"
f"Generated: {datetime.now():%Y-%m-%d %H:%M:%S}\n\n"
f"BASIC STATISTICS:\n"
f"- Total Comments: {basic_stats['total_comments']}\n"
f"- Average Likes: {basic_stats['avg_likes']:.1f}\n"
f"- Average Length: {basic_stats['avg_length']:.1f} characters\n"
f"- Median Length: {basic_stats['median_length']}\n"
f"- Average Words: {basic_stats['avg_words']:.1f}\n\n"
f"SENTIMENT ANALYSIS:\n"
f"- Positive: {sentiment_dist[Sentiment.POSITIVE]}\n"
f"- Slightly Positive: {sentiment_dist[Sentiment.SLIGHTLY_POSITIVE]}\n"
f"- Neutral: {sentiment_dist[Sentiment.NEUTRAL]}\n"
f"- Slightly Negative: {sentiment_dist[Sentiment.SLIGHTLY_NEGATIVE]}\n"
f"- Negative: {sentiment_dist[Sentiment.NEGATIVE]}\n\n"
f"TOP CONTRIBUTORS:\n" +
"\n".join(f"- {user}: {count} comments" for user, count in top_users) +
f"\n\nMOST MENTIONED:\n""\n".join(f"- {user}: {count} mentions" for user, count in top_mentioned) +
f"\n\nENGAGEMENT PERIODS:\n"
f"Early Period:\n"
f"- Comments: {period_stats['early']['comments']}\n"
f"- Avg Likes: {period_stats['early']['avg_likes']:.1f}\n"
f"- Positive Sentiment: {period_stats['early']['sentiment_ratio']*100:.1f}%\n\n"
f"Middle Period:\n"
f"- Comments: {period_stats['middle']['comments']}\n"
f"- Avg Likes: {period_stats['middle']['avg_likes']:.1f}\n"
f"- Positive Sentiment: {period_stats['middle']['sentiment_ratio']*100:.1f}%\n\n"
f"Late Period:\n"
f"- Comments: {period_stats['late']['comments']}\n"
f"- Avg Likes: {period_stats['late']['avg_likes']:.1f}\n"
f"- Positive Sentiment: {period_stats['late']['sentiment_ratio']*100:.1f}%\n"
)
return {
'csv': csv_output.getvalue(),
'analytics': text_report
}
# Gradio interface with improved input validation and error handling
import gradio as gr
def validate_input(content_type: str, link: str, likes: int, date: str,
description: str, comment_count: int, comments: str) -> Tuple[bool, str]:
"""Validate input parameters before processing"""
if not link:
return False, "Post link is required"
if likes < 0:
return False, "Likes count cannot be negative"
if comment_count < 0:
return False, "Comment count cannot be negative"
if not comments.strip():
return False, "Comments text is required"
return True, ""
def wrapped_analyze_post(*args):
"""Wrapper for analyze_post with input validation"""
is_valid, error_message = validate_input(*args)
if not is_valid:
return error_message, "", "", "", "0"
try:
return analyze_post(*args)
except Exception as e:
logger.error(f"Error in analyze_post wrapper: {e}", exc_info=True)
return f"An error occurred: {str(e)}", "", "", "", "0"
# Create enhanced Gradio interface
iface = gr.Interface(
fn=wrapped_analyze_post,
inputs=[
gr.Radio(
choices=["Photo", "Video", "Reel", "Story"],
label="Content Type",
value="Photo"
),
gr.Textbox(
label="Link to Post",
placeholder="https://instagram.com/p/..."
),
gr.Number(
label="Post Likes",
value=0,
minimum=0
),
gr.Textbox(
label="Post Date",
placeholder="YYYY-MM-DD"
),
gr.Textbox(
label="Post Description",
lines=3,
placeholder="Enter post description..."
),
gr.Number(
label="Total Comment Count",
value=0,
minimum=0
),
gr.Textbox(
label="Comments",
lines=10,
placeholder="Paste comments here..."
)
],
outputs=[
gr.Textbox(
label="Analytics Summary",
lines=20
),
gr.Textbox(
label="Extracted Usernames"
),
gr.Textbox(
label="Cleaned Comments"
),
gr.Textbox(
label="Comment Likes Timeline"
),
gr.Textbox(
label="Total Comment Likes"
)
],
title="Enhanced Instagram Comment Analyzer",
description="""
Analyze Instagram comments with advanced metrics including:
- Sentiment analysis with granular classification
- Temporal engagement patterns
- User interaction statistics
- Content quality metrics
""",
article="""
### Usage Instructions
1. Select the content type (Photo, Video, Reel, or Story)
2. Paste the post URL
3. Enter the post metadata (likes, date, description)
4. Paste the comments text
5. Click submit to generate analysis
### Analysis Features
- Multi-level sentiment analysis
- Engagement period breakdown
- Top contributors and mentions
- Detailed statistical metrics
### Notes
- All text fields support Unicode characters including emojis
- Time references are converted to a standardized format
- Analysis includes both quantitative and qualitative metrics
"""
)
if __name__ == "__main__":
# Configure logging for the main application
logger.info("Starting Instagram Comment Analyzer")
try:
# Launch the interface with enhanced settings
iface.launch(
server_name="0.0.0.0", # Allow external access
server_port=7860, # Default Gradio port
share=False, # Disable public URL generation
debug=False, # Disable debug mode in production
enable_queue=True, # Enable request queuing
max_threads=4 # Limit concurrent processing
)
except Exception as e:
logger.error(f"Failed to start application: {e}", exc_info=True)
raise |