File size: 8,855 Bytes
b65c5e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4d521
9c37eb2
b65c5e3
 
 
 
 
 
9c37eb2
b65c5e3
 
9c37eb2
b65c5e3
 
 
 
 
f6d8e1b
9c37eb2
f6d8e1b
 
 
9c37eb2
 
f6d8e1b
9c37eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3e7ab
f6d8e1b
3d3e7ab
f6d8e1b
 
 
3d3e7ab
f6d8e1b
 
 
 
9c37eb2
 
f6d8e1b
 
 
9c37eb2
 
 
 
3d3e7ab
9c37eb2
f6d8e1b
 
9c37eb2
f6d8e1b
3e4d521
9c37eb2
da083b5
b65c5e3
9c37eb2
b65c5e3
 
 
9c37eb2
 
 
 
 
 
b65c5e3
 
3d3e7ab
9c37eb2
 
 
3e4d521
3d3e7ab
9c37eb2
 
3d3e7ab
9c37eb2
 
 
 
 
3d3e7ab
b65c5e3
9c37eb2
 
 
 
 
 
 
 
 
 
b65c5e3
 
3d3e7ab
9c37eb2
3d3e7ab
 
 
 
 
 
 
 
9c37eb2
3d3e7ab
 
 
 
 
 
 
 
 
 
 
 
f6d8e1b
9c37eb2
 
 
 
 
 
f6d8e1b
b65c5e3
 
 
9c37eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da083b5
 
 
9c37eb2
da083b5
 
b65c5e3
 
 
 
9c37eb2
b65c5e3
9c37eb2
b65c5e3
9c37eb2
b65c5e3
9c37eb2
 
 
da083b5
9c37eb2
da083b5
 
9c37eb2
b65c5e3
9c37eb2
 
 
 
 
 
 
 
 
 
 
 
da083b5
 
 
 
b65c5e3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import argparse
import numpy as np
from helper import *
from config.GlobalVariables import *
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
import convenience
import gradio as gr

device = 'cpu'
num_samples = 10

net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)

if not torch.cuda.is_available():
    net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])


dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')


writer_options = [5, 14, 15, 16, 17, 22, 25, 80, 120, 137, 147, 151]
all_loaded_data = []
chosen_writers = [120, 80]
avail_char = "0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! ? \" ' * + - = : ; , . < > \ / [ ] ( ) # $ % &"
avail_char_list = avail_char.split(" ")
for writer_id in chosen_writers:
    loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
    all_loaded_data.append(loaded_data)

default_loaded_data = all_loaded_data[-1]

# data for writer interpolation
writer_words = ["hello", "world"]
writer_mean_Ws = []
all_word_writer_Ws = []
all_word_writer_Cs = []
writer_weight = 0.7


# data for char interpolation
blend_chars = ["y", "s"]
char_mean_global_W = None
char_weight = 0.7
default_mean_global_W = convenience.get_mean_global_W(net, default_loaded_data, device)
char_Ws = default_mean_global_W.reshape(1, 1, convenience.L)
char_Cs = all_Cs = torch.zeros(1, 2, convenience.L, convenience.L)


# data for MDN
mdn_words = ["hello", "world"]
mdn_mean_global_W = None
all_word_mdn_Ws = []
all_word_mdn_Cs = []


def update_writer_word(target_word):
    writer_words.clear()
    for word in target_word.split(" "):
        writer_words.append(word)

    all_word_writer_Ws.clear()
    all_word_writer_Cs.clear()
    for word in writer_words:
        all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
        all_word_writer_Ws.append(all_writer_Ws)
        all_word_writer_Cs.append(all_writer_Cs)

    return update_writer_slider(writer_weight)


# for writer interpolation
def update_writer_slider(val):
    global writer_weight
    writer_weight = val
    weights = [1 - writer_weight, writer_weight]

    net.clamp_mdn = 0
    im = convenience.draw_words(writer_words, all_word_writer_Ws, all_word_writer_Cs, weights, net)
    return im.convert("RGB")


def update_chosen_writers(writer1, writer2):
    net.clamp_mdn = 0
    chosen_writers[0], chosen_writers[1] = int(writer1.split(" ")[1]), int(writer2.split(" ")[1])

    all_loaded_data.clear()
    for writer_id in chosen_writers:
        loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
        all_loaded_data.append(loaded_data)

    writer_mean_Ws.clear()
    for loaded_data in all_loaded_data:
        mean_global_W = convenience.get_mean_global_W(net, loaded_data, device)
        writer_mean_Ws.append(mean_global_W)

    return gr.Slider.update(label=f"{writer1} vs. {writer2}"), update_writer_slider(writer_weight)

# for character blend


def update_char_slider(weight):
    """Generates an image of handwritten text based on target_sentence"""
    net.clamp_mdn = 0

    global char_weight
    char_weight = weight
    character_weights = [1 - weight, weight]

    all_W_c = convenience.get_character_blend_W_c(character_weights, char_Ws, char_Cs)
    all_commands = convenience.get_commands(net, blend_chars[0], all_W_c)
    im = convenience.commands_to_image(all_commands, 160, 750, 375, 30)

    return im.convert("RGB")


def update_blend_chars(c1, c2):
    global blend_chars
    blend_chars[0], blend_chars[1] = c1, c2

    for i in range(2):  # get corners of grid
        _, char_matrix = convenience.get_DSD(net, blend_chars[i], default_mean_global_W, [default_loaded_data], device)
        char_Cs[:, i, :, :] = char_matrix

    return gr.Slider.update(label=f"'{c1}' vs. '{c2}'")

# for MDN


def update_mdn_word(target_word):
    mdn_words.clear()
    for word in target_word.split(" "):
        mdn_words.append(word)

    all_word_mdn_Ws.clear()
    all_word_mdn_Cs.clear()
    for word in mdn_words:
        all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, default_mean_global_W, [default_loaded_data], device)
        all_word_mdn_Ws.append(all_writer_Ws)
        all_word_mdn_Cs.append(all_writer_Cs)

    return sample_mdn(net.scale_sd, net.clamp_mdn)


def sample_mdn(maxs, maxr):
    net.clamp_mdn = maxr
    net.scale_sd = maxs
    im = convenience.draw_words(mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, [1], net)
    return im.convert("RGB")


update_writer_word(" ".join(writer_words))
update_chosen_writers(f"Writer {chosen_writers[0]}", f"Writer {chosen_writers[1]}")

update_mdn_word(" ".join(writer_words))

update_blend_chars(*blend_chars)

with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.TabItem("Blend Writers"):
            target_word = gr.Textbox(label="Target Word", value=" ".join(writer_words), max_lines=1)
            with gr.Row():
                left_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 0]
                right_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 1]
                with gr.Column():
                    writer1 = gr.Radio(left_ratio_options, value="Style 120", label="Style for first writer")
                with gr.Column():
                    writer2 = gr.Radio(right_ratio_options, value="Style 80", label="Style for second writer")
            with gr.Row():
                writer_slider = gr.Slider(0, 1, value=writer_weight, label="Style 120 vs. Style 80")
            with gr.Row():
                writer_submit = gr.Button("Submit")
            with gr.Row():
                writer_default_image = update_writer_slider(writer_weight)
                writer_output = gr.Image(writer_default_image)

            writer_submit.click(fn=update_writer_slider, inputs=[writer_slider], outputs=[writer_output], show_progress=False)
            writer_slider.change(fn=update_writer_slider, inputs=[writer_slider], outputs=[writer_output], show_progress=False)
            target_word.submit(fn=update_writer_word, inputs=[target_word], outputs=[writer_output], show_progress=False)

            writer1.change(fn=update_chosen_writers, inputs=[writer1, writer2], outputs=[writer_slider, writer_output], show_progress=False)
            writer2.change(fn=update_chosen_writers, inputs=[writer1, writer2], outputs=[writer_slider, writer_output], show_progress=False)

        with gr.TabItem("Blend Characters"):
            with gr.Row():
                with gr.Column():
                    char1 = gr.Dropdown(choices=avail_char_list, value=blend_chars[0], label="Character 1")
                with gr.Column():
                    char2 = gr.Dropdown(choices=avail_char_list, value=blend_chars[1], label="Character 2")
            with gr.Row():
                char_slider = gr.Slider(0, 1, value=char_weight, label=f"'{blend_chars[0]}' vs. '{blend_chars[1]}'")
            with gr.Row():
                char_default_image = update_char_slider(char_weight)
                char_output = gr.Image(char_default_image)

            char_slider.change(fn=update_char_slider, inputs=[char_slider], outputs=[char_output], show_progress=False)

            char1.change(fn=update_blend_chars, inputs=[char1, char2], outputs=[char_slider], show_progress=False)
            char2.change(fn=update_blend_chars, inputs=[char1, char2], outputs=[char_slider], show_progress=False)

        with gr.TabItem("Add Randomness"):
            mdn_word = gr.Textbox(label="Target Word", value=" ".join(mdn_words), max_lines=1)
            with gr.Row():
                with gr.Column():
                    max_rand = gr.Slider(0, 1, value=net.clamp_mdn, label="Maximum Randomness")
                with gr.Column():
                    scale_rand = gr.Slider(0, 3, value=net.scale_sd, label="Scale of Randomness")
            with gr.Row():
                mdn_sample_button = gr.Button(value="Resample!")
            with gr.Row():
                default_im = sample_mdn(net.scale_sd, net.clamp_mdn)
                mdn_output = gr.Image(default_im)

            max_rand.change(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output], show_progress=False)
            scale_rand.change(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output], show_progress=False)
            mdn_sample_button.click(fn=sample_mdn, inputs=[scale_rand, max_rand], outputs=[mdn_output], show_progress=False)
            mdn_word.submit(fn=update_mdn_word, inputs=[mdn_word], outputs=[mdn_output], show_progress=False)

demo.launch()