Spaces:
Build error
Build error
File size: 15,839 Bytes
b65c5e3 9c37eb2 1b7b649 3d3e7ab 1b7b649 f6d8e1b 1b7b649 9c37eb2 b65c5e3 1b7b649 9c37eb2 1b7b649 9c37eb2 b65c5e3 1b7b649 5e527f9 3d3e7ab 5e527f9 1b7b649 9c37eb2 1b7b649 5e527f9 1b7b649 3e4d521 3d3e7ab 9c37eb2 1b7b649 9c37eb2 1b7b649 5e527f9 b65c5e3 1b7b649 3d3e7ab 1b7b649 3d3e7ab 9c37eb2 3d3e7ab 1b7b649 3d3e7ab 1b7b649 3d3e7ab 1b7b649 3d3e7ab 1b7b649 5e527f9 f6d8e1b 1b7b649 9c37eb2 1b7b649 f6d8e1b b65c5e3 1170f3b 1b7b649 1170f3b 1b7b649 1170f3b 1b7b649 1170f3b 1b7b649 b65c5e3 1b7b649 9c37eb2 1b7b649 9c37eb2 1b7b649 323e91a 5e527f9 1b7b649 5e527f9 1b7b649 b65c5e3 1b7b649 b65c5e3 1b7b649 5e527f9 1b7b649 b65c5e3 1b7b649 323e91a 5e527f9 1b7b649 5e527f9 1b7b649 9c37eb2 1b7b649 9c37eb2 1b7b649 9c37eb2 b65c5e3 1b7b649 9c37eb2 1b7b649 9c37eb2 1b7b649 9c37eb2 5e527f9 9c37eb2 1b7b649 323e91a 5e527f9 9c37eb2 1b7b649 5e527f9 b65c5e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import torch
import numpy as np
from helper import *
from config.GlobalVariables import *
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
import convenience
import gradio as gr
def update_chosen_writers(writer1, writer2, weight, words, all_loaded_data):
net.clamp_mdn = 0
chosen_writers = [int(writer1.split(" ")[1]), int(writer2.split(" ")[1])]
all_loaded_data = []
for writer_id in chosen_writers:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data.append(loaded_data)
writer_mean_Ws = []
for loaded_data in all_loaded_data:
mean_global_W = convenience.get_mean_global_W(net, loaded_data, device)
writer_mean_Ws.append(mean_global_W.detach())
return gr.Slider.update(label=f"{writer1} vs. {writer2}"), chosen_writers, writer_mean_Ws, *update_writer_word(" ".join(words), writer_mean_Ws, all_loaded_data, weight)
def update_writer_word(target_word, writer_mean_Ws, all_loaded_data, writer_weight, device="cpu"):
words = []
for word in target_word.split(" "):
if len(word) > 0:
words.append(word)
word_Ws = []
word_Cs = []
for word in words:
writer_Ws, writer_Cs = convenience.get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
word_Ws.append(writer_Ws)
word_Cs.append(writer_Cs)
if len(words) == 0:
word_Ws.append(torch.tensor([]))
word_Cs.append(torch.tensor([]))
return words, word_Ws, word_Cs, *update_writer_slider(writer_weight, words, word_Ws, word_Cs)
def update_writer_slider(weight, words, all_word_Ws, all_word_Cs):
weights = [1 - weight, weight]
net.clamp_mdn = 0
svg = convenience.draw_words_svg(words, all_word_Ws, all_word_Cs, weights, net)
return gr.HTML.update(value=svg.tostring()), gr.File.update(visible=False), gr.Button.update(visible=True), weight, svg
def update_writer_download(writer_svg):
writer_svg.saveas("./DSD_writer_interpolation.svg")
return gr.File.update(value="./DSD_writer_interpolation.svg", visible=True), gr.Button.update(visible=False)
# for character blend
def update_blend_chars(c1, c2, weight, char_Ws):
blend_chars = [c1, c2]
char_Cs = torch.zeros(1, 2, convenience.L, convenience.L)
for i in range(2): # get corners of grid
_, char_matrix = convenience.get_DSD(net, blend_chars[i], default_mean_global_W, [default_loaded_data], device)
char_Cs[:, i, :, :] = char_matrix
return gr.Slider.update(label=f"'{c1}' vs. '{c2}'"), char_Cs.detach(), blend_chars, *update_char_slider(weight, char_Ws, char_Cs, blend_chars)
def update_char_slider(weight, char_Ws, char_Cs, blend_chars):
"""Generates an image of handwritten text based on target_sentence"""
net.clamp_mdn = 0
character_weights = [1 - weight, weight]
all_W_c = convenience.get_character_blend_W_c(character_weights, char_Ws, char_Cs)
all_commands = convenience.get_commands(net, blend_chars[0], all_W_c)
svg = convenience.commands_to_svg(all_commands, 750, 160, 375)
return gr.HTML.update(value=svg.tostring()), gr.File.update(visible=False), gr.Button.update(visible=True), weight, svg
def update_char_download(char_svg):
char_svg.saveas("./DSD_char_interpolation.svg")
return gr.File.update(value="./DSD_char_interpolation.svg", visible=True), gr.Button.update(visible=False)
# for MDN
def update_mdn_word(target_word, scale_sd, clamp_mdn):
mdn_words = []
for word in target_word.split(" "):
mdn_words.append(word)
all_word_mdn_Ws = []
all_word_mdn_Cs = []
for word in mdn_words:
all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, default_mean_global_W, [default_loaded_data], device)
all_word_mdn_Ws.append(all_writer_Ws)
all_word_mdn_Cs.append(all_writer_Cs)
return mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, *sample_mdn(scale_sd, clamp_mdn, mdn_words, all_word_mdn_Ws, all_word_mdn_Cs)
def sample_mdn(maxs, maxr, mdn_words, all_word_mdn_Ws, all_word_mdn_Cs):
net.clamp_mdn = maxr
net.scale_sd = maxs
svg = convenience.draw_words_svg(mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, [1], net)
return gr.HTML.update(value=svg.tostring()), gr.File.update(visible=False), gr.Button.update(visible=True), maxr, maxs, svg
def update_mdn_download(mdn_svg):
mdn_svg.saveas("./DSD_add_randomness.svg")
return gr.File.update(value="./DSD_add_randomness.svg", visible=True), gr.Button.update(visible=False)
device = 'cpu'
num_samples = 10
net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)
if not torch.cuda.is_available():
net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])
dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')
writer_options = [5, 14, 15, 16, 17, 22, 25, 80, 120, 137, 147, 151]
all_loaded_data_DEFAULT = []
chosen_writers_DEFAULT = [120, 80]
avail_char = "0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! ? \" ' * + - = : ; , . < > \ / [ ] ( ) # $ % &"
avail_char_list = avail_char.split(" ")
for writer_id in chosen_writers_DEFAULT:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data_DEFAULT.append(loaded_data)
default_loaded_data = all_loaded_data_DEFAULT[-1]
default_mean_global_W = convenience.get_mean_global_W(net, default_loaded_data, device)
# data for writer interpolation
writer_words_DEFAULT = ["hello", "world"]
writer_mean_Ws_DEFAULT = []
writer_all_word_Ws_DEFAULT = []
writer_all_word_Cs_DEFAULT = []
writer_weight_DEFAULT = 0.7
writer_svg_DEFAULT = None
# data for char interpolation
char_chosen_DEFAULT = ["y", "s"]
char_mean_global_W_DEFAULT = None
char_weight_DEFAULT = 0.7
char_Ws_DEFAULT = default_mean_global_W.reshape(1, 1, convenience.L)
char_Cs_DEFAULT = None
char_svg_DEFAULT = None
# # data for MDN
mdn_words_DEFAULT = ["hello", "world"]
all_word_mdn_Ws_DEFAULT = None
all_word_mdn_Cs_DEFAULT = None
clamp_mdn_DEFAULT = 0.5
scale_sd_DEFAULT = 1
mdn_svg_DEFAULT = None
_wrds, writer_all_word_Ws_DEFAULT, writer_all_word_Cs_DEFAULT, _html, _file, _btn, _wt, _svg = update_writer_word(" ".join(writer_words_DEFAULT), writer_mean_Ws_DEFAULT, all_loaded_data_DEFAULT, writer_weight_DEFAULT)
_sldr, _wrtrs, writer_mean_Ws_DEFAULT, _wrds, _waww, _wawc, _html, _file, _btn, _wt, writer_svg_DEFAULT = update_chosen_writers(f"Writer {chosen_writers_DEFAULT[0]}", f"Writer {chosen_writers_DEFAULT[1]}", writer_weight_DEFAULT, writer_words_DEFAULT, all_loaded_data_DEFAULT)
_wrds, all_word_mdn_Ws_DEFAULT, all_word_mdn_Cs_DEFAULT, _html, _file, _btn, _maxr, _maxs, mdn_svg_DEFAULT = update_mdn_word(" ".join(mdn_words_DEFAULT), scale_sd_DEFAULT, clamp_mdn_DEFAULT)
_sldr, char_Cs_DEFAULT, _chrs, _html, _file, _btn, _wght, char_svg_DEFAULT = update_blend_chars(*char_chosen_DEFAULT, char_weight_DEFAULT, char_Ws_DEFAULT)
with gr.Blocks() as demo:
all_loaded_data_var = gr.Variable(all_loaded_data_DEFAULT)
chosen_writers_var = gr.Variable(chosen_writers_DEFAULT)
# data for writer interpolation
writer_words_var = gr.Variable(writer_words_DEFAULT)
writer_mean_Ws_var = gr.Variable(writer_mean_Ws_DEFAULT)
writer_all_word_Ws_var = gr.Variable([e.detach() for e in writer_all_word_Ws_DEFAULT])
writer_all_word_Cs_var = gr.Variable([e.detach() for e in writer_all_word_Cs_DEFAULT])
writer_weight_var = gr.Variable(writer_weight_DEFAULT)
writer_svg_var = gr.Variable(writer_svg_DEFAULT)
# data for char interpolation
char_chosen_var = gr.Variable(char_chosen_DEFAULT)
char_mean_global_W_var = gr.Variable(char_mean_global_W_DEFAULT)
char_weight_var = gr.Variable(char_weight_DEFAULT)
char_Ws_var = gr.Variable(char_Ws_DEFAULT.detach())
char_Cs_var = gr.Variable(char_Cs_DEFAULT.detach())
char_svg_var = gr.Variable(char_svg_DEFAULT)
# # data for MDN
mdn_words_var = gr.Variable(mdn_words_DEFAULT)
all_word_mdn_Ws_var = gr.Variable([e.detach() for e in all_word_mdn_Ws_DEFAULT])
all_word_mdn_Cs_var = gr.Variable([e.detach() for e in all_word_mdn_Cs_DEFAULT])
clamp_mdn_var = gr.Variable(clamp_mdn_DEFAULT)
scale_sd_var = gr.Variable(scale_sd_DEFAULT)
mdn_svg_var = gr.Variable(mdn_svg_DEFAULT)
with gr.Tabs():
with gr.TabItem("Blend Writers"):
target_word = gr.Textbox(label="Target Word", value=" ".join(writer_words_DEFAULT), max_lines=1)
with gr.Row():
left_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 0]
right_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 1]
with gr.Column():
writer1 = gr.Radio(left_ratio_options, value="Style 120", label="Style for first writer")
with gr.Column():
writer2 = gr.Radio(right_ratio_options, value="Style 80", label="Style for second writer")
with gr.Row():
writer_slider = gr.Slider(0, 1, value=writer_weight_DEFAULT, label="Style 120 vs. Style 80")
with gr.Row():
writer_default_image = update_writer_slider(writer_weight_DEFAULT, writer_words_DEFAULT, writer_all_word_Ws_DEFAULT, writer_all_word_Cs_DEFAULT)
writer_output = gr.HTML(writer_default_image[0]["value"])
with gr.Row():
writer_download_btn = gr.Button("Save to SVG file")
writer_download_btn.style(full_width="true")
writer_download = gr.File(interactive=False, show_label=False, visible=False)
writer_slider.change(fn=update_writer_slider,
inputs=[writer_slider, writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var],
outputs=[writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var], show_progress=False)
target_word.submit(fn=update_writer_word,
inputs=[target_word, writer_mean_Ws_var, all_loaded_data_var, writer_weight_var],
outputs=[writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var, writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var], show_progress=False)
writer1.change(fn=update_chosen_writers,
inputs=[writer1, writer2, writer_weight_var, writer_words_var, all_loaded_data_var],
outputs=[writer_slider, chosen_writers_var, writer_mean_Ws_var, writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var, writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var])
writer2.change(fn=update_chosen_writers,
inputs=[writer1, writer2, writer_weight_var, writer_words_var, all_loaded_data_var],
outputs=[writer_slider, chosen_writers_var, writer_mean_Ws_var, writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var, writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var])
writer_download_btn.click(fn=update_writer_download,
inputs=[writer_svg_var],
outputs=[writer_download, writer_download_btn])
with gr.TabItem("Blend Characters"):
with gr.Row():
with gr.Column():
char1 = gr.Dropdown(choices=avail_char_list, value=char_chosen_DEFAULT[0], label="Character 1")
with gr.Column():
char2 = gr.Dropdown(choices=avail_char_list, value=char_chosen_DEFAULT[1], label="Character 2")
with gr.Row():
char_slider = gr.Slider(0, 1, value=char_weight_DEFAULT, label=f"'{char_chosen_DEFAULT[0]}' vs. '{char_chosen_DEFAULT[1]}'")
with gr.Row():
char_default_image = update_char_slider(char_weight_DEFAULT, char_Ws_DEFAULT, char_Cs_DEFAULT, char_chosen_DEFAULT)
char_output = gr.HTML(char_default_image[0]["value"])
with gr.Row():
char_download_btn = gr.Button("Save to SVG file")
char_download_btn.style(full_width="true")
char_download = gr.File(interactive=False, show_label=False, visible=False)
char_slider.change(fn=update_char_slider,
inputs=[char_slider, char_Ws_var, char_Cs_var, char_chosen_var],
outputs=[char_output, char_download, char_download_btn, char_weight_var, char_svg_var], show_progress=False)
char1.change(fn=update_blend_chars,
inputs=[char1, char2, char_weight_var, char_Ws_var],
outputs=[char_slider, char_Cs_var, char_chosen_var, char_output, char_download, char_download_btn, char_weight_var, char_svg_var])
char2.change(fn=update_blend_chars,
inputs=[char1, char2, char_weight_var, char_Ws_var],
outputs=[char_slider, char_Cs_var, char_chosen_var, char_output, char_download, char_download_btn, char_weight_var, char_svg_var])
char_download_btn.click(fn=update_char_download,
inputs=[char_svg_var],
outputs=[char_download, char_download_btn], show_progress=True)
with gr.TabItem("Add Randomness"):
mdn_word = gr.Textbox(label="Target Word", value=" ".join(mdn_words_DEFAULT), max_lines=1)
with gr.Row():
with gr.Column():
max_rand = gr.Slider(0, 1, value=clamp_mdn_DEFAULT, label="Maximum Randomness")
with gr.Column():
scale_rand = gr.Slider(0, 3, value=scale_sd_DEFAULT, label="Scale of Randomness")
with gr.Row():
mdn_sample_button = gr.Button(value="Resample")
with gr.Row():
default_im = sample_mdn(scale_sd_DEFAULT, clamp_mdn_DEFAULT, mdn_words_DEFAULT, all_word_mdn_Ws_DEFAULT, all_word_mdn_Cs_DEFAULT)
mdn_output = gr.HTML(default_im[0]["value"])
with gr.Row():
randomness_download_btn = gr.Button("Save to SVG file")
randomness_download = gr.File(interactive=False, show_label=False, visible=False)
max_rand.change(fn=sample_mdn,
inputs=[scale_rand, max_rand, mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var],
outputs=[mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
scale_rand.change(fn=sample_mdn,
inputs=[scale_rand, max_rand, mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var],
outputs=[mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
mdn_sample_button.click(fn=sample_mdn,
inputs=[scale_rand, max_rand, mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var],
outputs=[mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
mdn_word.submit(fn=update_mdn_word,
inputs=[mdn_word, scale_sd_var, clamp_mdn_var],
outputs=[mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var, mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
randomness_download_btn.click(fn=update_mdn_download,
inputs=[mdn_svg_var],
outputs=[randomness_download, randomness_download_btn])
randomness_download_btn.style(full_width="true")
demo.launch()
|