File size: 2,419 Bytes
3a7387c
7bafad1
 
cb518f2
3a7387c
 
 
cb518f2
 
 
 
ce02056
3a7387c
cb518f2
3a7387c
cb518f2
7bafad1
cb518f2
3a7387c
ce02056
 
3a7387c
 
7bafad1
3a7387c
ce02056
3a7387c
1f5e987
ce02056
 
 
cb518f2
ce02056
1f5e987
ce02056
 
cb518f2
ce02056
 
 
 
 
7bafad1
ce02056
 
 
cb518f2
ce02056
 
 
7bafad1
3a7387c
ce02056
 
 
 
 
 
 
 
 
3a7387c
6680594
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
from flask import Flask, render_template, request
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db
import logging

app = Flask(__name__)

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@app.route('/', methods=['GET', 'POST'])
def index():
    logger.info("Starting to fetch RSS feeds")
    articles = fetch_rss_feeds()
    logger.info(f"Fetched {len(articles)} articles")
    process_and_store_articles(articles)
    logger.info("Articles processed and stored")
    stored_docs = vector_db.similarity_search("news", k=len(articles))
    enriched_articles = [
        {
            "title": doc.metadata["title"],
            "link": doc.metadata["link"],
            "description": doc.metadata["original_description"],  # Use original description
            "category": doc.metadata["category"],
            "sentiment": doc.metadata["sentiment"],
            "published": doc.metadata["published"],
            "image": doc.metadata.get("image", "svg"),
        }
        for doc in stored_docs
    ]
    logger.info(f"Enriched {len(enriched_articles)} articles for display")

    if request.method == 'POST' and 'search' in request.form:
        query = request.form.get('search')
        if query:
            logger.info(f"Processing search query: {query}")
            results = vector_db.similarity_search(query, k=10)
            enriched_articles = [
                {
                    "title": doc.metadata["title"],
                    "link": doc.metadata["link"],
                    "description": doc.metadata["original_description"],
                    "category": doc.metadata["category"],
                    "sentiment": doc.metadata["sentiment"],
                    "published": doc.metadata["published"],
                    "image": doc.metadata.get("image", "svg"),
                }
                for doc in results
            ]
            logger.info(f"Search returned {len(enriched_articles)} results")

    categorized_articles = {}
    for article in enriched_articles:
        cat = article["category"]
        if cat not in categorized_articles:
            categorized_articles[cat] = []
        categorized_articles[cat].append(article)

    return render_template("index.html", categorized_articles=categorized_articles)

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)