Spaces:
Sleeping
Sleeping
File size: 1,022 Bytes
ea5b7d5 59a2d05 ea5b7d5 59a2d05 ea5b7d5 59a2d05 ea5b7d5 59a2d05 ea5b7d5 59a2d05 ea5b7d5 5d64005 ea5b7d5 5d64005 ea5b7d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
#%%
import plotly.express as px
import numpy as np
import pandas as pd
import streamlit as st
import tensorflow as tf
from keras.preprocessing import image
#docker build -t streamlit
# docker compose up
st.markdown("## Bone Fracture Recognition with TensorFlow")
# actu_loc = [actu + f"_{loc}" for loc in locations]
# fore_loc = [fore + f"_{loc}" for loc in locations]
image_file = st.file_uploader("Upload X-Ray Image", type=['png', 'jpg'])
if image_file:
st.image(image_file, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto")
model = tf.keras.models.load_model("cnnBoneFracRec.h5")
target_names = ['Non-Fractured', 'Fractured']
temp_img = image.load_img(image_file, target_size=(100, 100))
x = image.img_to_array(temp_img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
prediction = np.argmax(model.predict(images), axis=1)
prediction_str = target_names[prediction.item()]
7
if prediction_str:
st.markdown(f"##### Prediction : {prediction_str}")
|